DHEIVER's picture
Update app.py
5ae02e5 verified
raw
history blame
6.42 kB
import gradio as gr
import torch
import torchaudio
import scipy.io.wavfile
import numpy as np
from transformers import AutoProcessor, SeamlessM4Tv2Model
from pathlib import Path
from typing import Optional, Union
class SeamlessTranslator:
def __init__(self, model_name: str = "facebook/seamless-m4t-v2-large"):
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = SeamlessM4Tv2Model.from_pretrained(model_name)
self.sample_rate = self.model.config.sampling_rate
except Exception as e:
raise RuntimeError(f"Failed to initialize model: {str(e)}")
# Available language pairs
self.language_codes = {
"English": "eng",
"Spanish": "spa",
"French": "fra",
"German": "deu",
"Italian": "ita",
"Portuguese": "por",
"Russian": "rus",
"Chinese": "cmn",
"Japanese": "jpn",
"Korean": "kor",
"Arabic": "ara",
"Hindi": "hin",
}
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
try:
inputs = self.processor(text=text, src_lang=src_lang, return_tensors="pt")
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
return self.sample_rate, audio_array
except Exception as e:
raise RuntimeError(f"Text translation failed: {str(e)}")
def translate_audio(self, audio_path: str, tgt_lang: str) -> tuple[int, np.ndarray]:
try:
# Load and resample audio
audio, orig_freq = torchaudio.load(audio_path)
audio = torchaudio.functional.resample(
audio,
orig_freq=orig_freq,
new_freq=16_000
)
# Process and generate translation
inputs = self.processor(audios=audio, return_tensors="pt")
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
return self.sample_rate, audio_array
except Exception as e:
raise RuntimeError(f"Audio translation failed: {str(e)}")
class GradioInterface:
def __init__(self):
self.translator = SeamlessTranslator()
self.languages = list(self.translator.language_codes.keys())
def text_to_speech(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
src_code = self.translator.language_codes[src_lang]
tgt_code = self.translator.language_codes[tgt_lang]
return self.translator.translate_text(text, src_code, tgt_code)
def speech_to_speech(self, audio_path: str, tgt_lang: str) -> tuple[int, np.ndarray]:
tgt_code = self.translator.language_codes[tgt_lang]
return self.translator.translate_audio(audio_path, tgt_code)
def launch(self):
# Create the Gradio interface
with gr.Blocks(title="SeamlessM4T Translator") as demo:
gr.Markdown("# 🌐 SeamlessM4T Translator")
gr.Markdown("Translate text or speech to different languages using Meta's SeamlessM4T model")
with gr.Tabs():
# Text-to-Speech tab
with gr.TabItem("Text to Speech"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Input Text",
placeholder="Enter text to translate...",
lines=3
)
src_lang = gr.Dropdown(
choices=self.languages,
value="English",
label="Source Language"
)
tgt_lang_text = gr.Dropdown(
choices=self.languages,
value="Spanish",
label="Target Language"
)
translate_btn = gr.Button("Translate", variant="primary")
with gr.Column():
audio_output = gr.Audio(
label="Translated Speech",
type="numpy"
)
translate_btn.click(
fn=self.text_to_speech,
inputs=[text_input, src_lang, tgt_lang_text],
outputs=audio_output
)
# Speech-to-Speech tab
with gr.TabItem("Speech to Speech"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Input Speech",
type="filepath"
)
tgt_lang_speech = gr.Dropdown(
choices=self.languages,
value="Spanish",
label="Target Language"
)
translate_audio_btn = gr.Button("Translate", variant="primary")
with gr.Column():
audio_output_s2s = gr.Audio(
label="Translated Speech",
type="numpy"
)
translate_audio_btn.click(
fn=self.speech_to_speech,
inputs=[audio_input, tgt_lang_speech],
outputs=audio_output_s2s
)
gr.Markdown(
"""
### Notes
- Text-to-Speech: Enter text and select source/target languages
- Speech-to-Speech: Upload an audio file and select target language
- Processing may take a few moments depending on input length
"""
)
# Launch the interface
demo.launch(share=True)
if __name__ == "__main__":
interface = GradioInterface()
interface.launch()