|
import os |
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" |
|
|
|
import gradio as gr |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from preprocess import unsharp_masking |
|
import time |
|
from sklearn.cluster import KMeans |
|
import os |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def ordenar_e_preprocessar_imagem(img, modelo): |
|
ori = img.copy() |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
h, w = img.shape |
|
img_out = preprocessar_imagem(img, modelo) |
|
return img_out, h, w, img, ori |
|
|
|
|
|
def preprocessar_imagem(img, modelo='SE-RegUNet 4GF'): |
|
|
|
img = cv2.resize(img, (512, 512)) |
|
|
|
|
|
img = unsharp_masking(img).astype(np.uint8) |
|
|
|
|
|
def normalizar_imagem(img): |
|
return np.float32((img - img.min()) / (img.max() - img.min() + 1e-6)) |
|
|
|
if modelo == 'AngioNet' or modelo == 'UNet3+': |
|
img = normalizar_imagem(img) |
|
img_out = np.expand_dims(img, axis=0) |
|
elif modelo == 'SE-RegUNet 4GF': |
|
clahe1 = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
clahe2 = cv2.createCLAHE(clipLimit=8.0, tileGridSize=(8, 8)) |
|
image1 = clahe1.apply(img) |
|
image2 = clahe2.apply(img) |
|
img = normalizar_imagem(img) |
|
image1 = normalizar_imagem(image1) |
|
image2 = normalizar_imagem(image2) |
|
img_out = np.stack((img, image1, image2), axis=0) |
|
else: |
|
clahe1 = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
image1 = clahe1.apply(img) |
|
image1 = normalizar_imagem(image1) |
|
img_out = np.stack((image1,) * 3, axis=0) |
|
|
|
return img_out |
|
|
|
|
|
import os |
|
|
|
|
|
diretorio_atual = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
|
|
def processar_imagem_de_entrada(img, modelo, pipe, salvar_resultado=False): |
|
try: |
|
|
|
img = img.copy() |
|
|
|
|
|
pipe = pipe.to(device).eval() |
|
|
|
|
|
start = time.time() |
|
|
|
|
|
img, h, w, ori_gray, ori = ordenar_e_preprocessar_imagem(img, modelo) |
|
|
|
|
|
img = torch.FloatTensor(img).unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
if modelo == 'AngioNet': |
|
img = torch.cat([img, img], dim=0) |
|
logit = np.round(torch.softmax(pipe.forward(img), dim=1).detach().cpu().numpy()[0, 0]).astype(np.uint8) |
|
|
|
|
|
spent = time.time() - start |
|
spent = f"{spent:.3f} segundos" |
|
|
|
|
|
if h != 512 or w != 512: |
|
logit = cv2.resize(logit, (h, w)) |
|
|
|
|
|
logit = logit.astype(bool) |
|
|
|
|
|
img_out = ori.copy() |
|
img_out[logit, 0] = 255 |
|
|
|
|
|
caminho_salvar_resultado = os.path.join(diretorio_atual, "Segmento_de_Angio_Coronariana_v5", "Salvar Resultado") |
|
|
|
|
|
os.makedirs(caminho_salvar_resultado, exist_ok=True) |
|
|
|
|
|
if salvar_resultado: |
|
nome_arquivo = os.path.join(caminho_salvar_resultado, f'resultado_{int(time.time())}.png') |
|
cv2.imwrite(nome_arquivo, img_out) |
|
|
|
return spent, img_out |
|
|
|
except Exception as e: |
|
|
|
return str(e), None |
|
|
|
|
|
|
|
models = { |
|
'SE-RegUNet 4GF': torch.jit.load('./model/SERegUNet4GF.pt'), |
|
'SE-RegUNet 16GF': torch.jit.load('./model/SERegUNet16GF.pt'), |
|
'AngioNet': torch.jit.load('./model/AngioNet.pt'), |
|
'EffUNet++ B5': torch.jit.load('./model/EffUNetppb5.pt'), |
|
'Reg-SA-UNet++': torch.jit.load('./model/RegSAUnetpp.pt'), |
|
'UNet3+': torch.jit.load('./model/UNet3plus.pt'), |
|
} |
|
|
|
from scipy.spatial import distance |
|
from scipy.ndimage import label |
|
import numpy as np |
|
|
|
|
|
def processar_imagem_de_entrada_wrapper(img, modelo, salvar_resultado=False): |
|
model = models[modelo] |
|
resultado, img_out = processar_imagem_de_entrada(img, modelo, model, salvar_resultado) |
|
|
|
|
|
kmeans = KMeans(n_clusters=2, random_state=0) |
|
flattened_img = img_out[:, :, 0].reshape((-1, 1)) |
|
kmeans.fit(flattened_img) |
|
labels = kmeans.labels_ |
|
cluster_centers = kmeans.cluster_centers_ |
|
|
|
|
|
kmeans = KMeans(n_clusters=2, random_state=0) |
|
flattened_img = img_out[:, :, 0].reshape((-1, 1)) |
|
kmeans.fit(flattened_img) |
|
labels = kmeans.labels_ |
|
cluster_centers = kmeans.cluster_centers_ |
|
|
|
|
|
|
|
|
|
num_clusters = len(cluster_centers) |
|
cluster_features = [] |
|
for i in range(num_clusters): |
|
cluster_mask = labels == i |
|
|
|
|
|
area = np.sum(cluster_mask) |
|
|
|
if area == 0: |
|
continue |
|
|
|
|
|
contours, _ = cv2.findContours(np.uint8(cluster_mask), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if len(contours) > 0: |
|
perimeter = cv2.arcLength(contours[0], True) |
|
compactness = 4 * np.pi * area / (perimeter ** 2) |
|
|
|
cluster_features.append({'area': area, 'compactness': compactness}) |
|
|
|
|
|
has_disease_flag = any(feature['area'] >= 200 and feature['compactness'] < 0.3 for feature in cluster_features) |
|
|
|
|
|
if has_disease_flag: |
|
status_doenca = "Sim" |
|
explanation = "A máquina detectou uma possível doença nos vasos sanguíneos." |
|
else: |
|
status_doenca = "Não" |
|
explanation = "A máquina não detectou nenhuma doença nos vasos sanguíneos." |
|
|
|
|
|
|
|
return resultado, img_out, status_doenca, explanation, f"{num_analises} análises realizadas" |
|
|
|
|
|
num_analises = 0 |
|
|
|
|
|
my_app = gr.Interface( |
|
fn=processar_imagem_de_entrada_wrapper, |
|
inputs=[ |
|
gr.inputs.Image(label="Angiograma:", shape=(512, 512)), |
|
gr.inputs.Dropdown(['SE-RegUNet 4GF','SE-RegUNet 16GF', 'AngioNet', 'EffUNet++ B5', 'Reg-SA-UNet++', 'UNet3+'], label='Modelo', default='SE-RegUNet 4GF'), |
|
gr.inputs.Checkbox(label="Salvar Resultado"), |
|
], |
|
outputs=[ |
|
gr.outputs.Label(label="Tempo decorrido"), |
|
gr.outputs.Image(type="numpy", label="Imagem de Saída"), |
|
gr.outputs.Label(label="Possui Doença?"), |
|
gr.outputs.Label(label="Explicação"), |
|
gr.outputs.Label(label="Análises Realizadas"), |
|
], |
|
title="Segmentação de Angiograma Coronariano", |
|
description="Esta aplicação segmenta angiogramas coronarianos usando modelos de segmentação pré-treinados.", |
|
theme="default", |
|
layout="vertical", |
|
allow_flagging=False, |
|
) |
|
|
|
|
|
my_app.launch() |
|
|