File size: 1,485 Bytes
bc12901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import streamlit as st
import torch
from docquery.pipeline import get_pipeline
from docquery.document import load_bytes
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = get_pipeline(device=device)
def process_document(file, question):
# prepare encoder inputs
document = load_document(file.name)
return pipeline(question=question, **document.context)
def ensure_list(x):
if isinstance(x, list):
return x
else:
return [x]
st.title("DocQuery: Query Documents Using NLP")
file = st.file_uploader("Upload a PDF or Image document")
question = st.text_input("QUESTION", "")
document = None
if file is not None:
col1, col2 = st.columns(2)
document = load_bytes(file, file.name)
col1.image(document.preview, use_column_width=True)
if document is not None and question is not None and len(question) > 0:
predictions = pipeline(question=question, **document.context)
col2.header("Probabilities")
for p in ensure_list(predictions):
col2.subheader(f"{ p['answer'] }: { round(p['score'] * 100, 1)}%")
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them."
"[Github Repo](https://github.com/impira/docquery)"
|