File size: 6,393 Bytes
bc12901 2359223 ab36703 bc12901 2359223 bc6a638 bc12901 bc6a638 225fcc2 2359223 225fcc2 2359223 8171e8e 225fcc2 2359223 8171e8e bc6a638 2359223 225fcc2 1af0b6d fcfd908 1af0b6d 0b2b653 1af0b6d fcfd908 bc12901 bc6a638 2359223 bc6a638 d229b67 2359223 bc6a638 87ad231 2359223 225fcc2 bc6a638 0b2b653 bc6a638 2359223 bc6a638 2359223 0b2b653 2359223 bc6a638 2359223 0b2b653 2359223 27d0a44 2359223 27d0a44 2359223 177edb5 27d0a44 2359223 bc6a638 177edb5 2359223 bc6a638 177edb5 d229b67 2359223 bc6a638 2359223 177edb5 2359223 2b1c83d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import functools
from PIL import Image, ImageDraw
import gradio as gr
import torch
from docquery.pipeline import get_pipeline
from docquery.document import load_bytes, load_document, ImageDocument
def ensure_list(x):
if isinstance(x, list):
return x
else:
return [x]
CHECKPOINTS = {
"LayoutLMv1 🦉": "impira/layoutlm-document-qa",
"Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa",
}
PIPELINES = {}
def construct_pipeline(model):
global PIPELINES
if model in PIPELINES:
return PIPELINES[model]
device = "cuda" if torch.cuda.is_available() else "cpu"
ret = get_pipeline(checkpoint=CHECKPOINTS[model], device=device)
PIPELINES[model] = ret
return ret
@functools.lru_cache(1024)
def run_pipeline(model, question, document, top_k):
pipeline = construct_pipeline(model)
return pipeline(question=question, **document.context, top_k=top_k)
# TODO: Move into docquery
# TODO: Support words past the first page (or window?)
def lift_word_boxes(document):
return document.context["image"][0][1]
def expand_bbox(word_boxes):
if len(word_boxes) == 0:
return None
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
return [min_x, min_y, max_x, max_y]
# LayoutLM boxes are normalized to 0, 1000
def normalize_bbox(box, width, height, padding=0.005):
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
if padding != 0:
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(max_x + padding, 1)
max_y = min(max_y + padding, 1)
return [min_x * width, min_y * height, max_x * width, max_y * height]
examples = [
[
"invoice.png",
"What is the invoice number?",
],
[
"contract.jpeg",
"What is the purchase amount?",
],
[
"statement.png",
"What are net sales for 2020?",
],
]
def process_path(path):
if path:
try:
document = load_document(path)
return document, document.preview, None
except Exception:
pass
return None, None, None
def process_upload(file):
if file:
return process_path(file.name)
else:
return None, None, None
colors = ["#64A087", "green", "black"]
def process_question(question, document, model=list(CHECKPOINTS.keys())[0]):
if document is None:
return None, None
predictions = run_pipeline(model, question, document, 3)
image = document.preview.copy()
draw = ImageDraw.Draw(image, "RGBA")
for i, p in enumerate(ensure_list(predictions)):
if i > 0:
# Keep the code around to produce multiple boxes, but only show the top
# prediction for now
break
if "start" in p and "end" in p:
x1, y1, x2, y2 = normalize_bbox(
expand_bbox(lift_word_boxes(document)[p["start"] : p["end"] + 1]),
image.width,
image.height,
)
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
return image, predictions
def load_example_document(img, question, model):
document = ImageDocument(Image.fromarray(img))
preview, answer = process_question(question, document, model)
return document, question, preview, answer
CSS = """
#short-upload-box .w-full {
min-height: 10rem !important;
}
#question input {
font-size: 16px;
}
"""
with gr.Blocks(css=CSS) as demo:
gr.Markdown("# DocQuery: Query Documents w/ NLP")
document = gr.Variable()
example_question = gr.Textbox(visible=False)
example_image = gr.Image(visible=False)
gr.Markdown("## 1. Upload a file or select an example")
with gr.Row(equal_height=True):
with gr.Column():
upload = gr.File(
label="Upload a file", interactive=True, elem_id="short-upload-box"
)
url = gr.Textbox(label="... or a URL", interactive=True)
gr.Examples(
examples=examples,
inputs=[example_image, example_question],
)
gr.Markdown("## 2. Ask a question")
with gr.Row(equal_height=True):
question = gr.Textbox(
label="Question",
placeholder="e.g. What is the invoice number?",
lines=1,
max_lines=1,
elem_id="question",
)
model = gr.Radio(
choices=list(CHECKPOINTS.keys()),
value=list(CHECKPOINTS.keys())[0],
label="Model",
)
with gr.Row():
clear_button = gr.Button("Clear", variant="secondary")
submit_button = gr.Button("Submit", variant="primary", elem_id="submit-button")
with gr.Row():
image = gr.Image(visible=True)
with gr.Column():
output = gr.JSON(label="Output")
clear_button.click(
lambda _: (None, None, None, None),
inputs=clear_button,
outputs=[image, document, question, output],
)
upload.change(fn=process_upload, inputs=[upload], outputs=[document, image, output])
url.change(fn=process_path, inputs=[url], outputs=[document, image, output])
question.submit(
fn=process_question,
inputs=[question, document, model],
outputs=[image, output],
)
submit_button.click(
process_question,
inputs=[question, document, model],
outputs=[image, output],
)
model.change(
process_question, inputs=[question, document, model], outputs=[image, output]
)
example_image.change(
fn=load_example_document,
inputs=[example_image, example_question, model],
outputs=[document, question, image, output],
)
gr.Markdown("### More Info")
gr.Markdown(
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question"
" answering dataset, as well as SQuAD, which boosts its English-language comprehension."
" To use it, simply upload an image or PDF, type a question, and click 'submit', or "
" click one of the examples to load them."
)
gr.Markdown("[Github Repo](https://github.com/impira/docquery)")
if __name__ == "__main__":
demo.launch()
|