Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ list_llm = [
|
|
26 |
"mosaicml/mpt-7b-instruct"
|
27 |
]
|
28 |
|
29 |
-
list_llm_simple = [
|
30 |
|
31 |
# Função para carregar documentos PDF
|
32 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
@@ -56,12 +56,21 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
56 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
57 |
|
58 |
progress(0.4, desc="Inicializando pipeline...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
pipeline_obj = pipeline(
|
60 |
-
|
61 |
model=llm_model,
|
62 |
tokenizer=tokenizer,
|
63 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
64 |
-
device=
|
65 |
max_new_tokens=max_tokens,
|
66 |
do_sample=True,
|
67 |
top_k=top_k,
|
@@ -87,8 +96,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
87 |
# Interface Gradio
|
88 |
def demo():
|
89 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
90 |
-
vector_db = gr.State(None)
|
91 |
-
qa_chain = gr.State(None)
|
92 |
|
93 |
gr.Markdown("## 🤖 Chatbot para PDFs com Modelos Gratuitos")
|
94 |
|
@@ -102,7 +111,7 @@ def demo():
|
|
102 |
process_status = gr.Textbox(label="Status do Processamento", interactive=False)
|
103 |
|
104 |
with gr.Tab("🧠 Modelo"):
|
105 |
-
model_selector = gr.Dropdown(list_llm_simple, label="Selecione o Modelo", value=list_llm_simple[
|
106 |
temperature = gr.Slider(0, 1, value=0.7, label="Criatividade")
|
107 |
load_model_btn = gr.Button("Carregar Modelo")
|
108 |
model_status = gr.Textbox(label="Status do Modelo", interactive=False)
|
@@ -114,10 +123,13 @@ def demo():
|
|
114 |
|
115 |
# Eventos
|
116 |
def process_documents(files, cs, co):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
|
122 |
process_btn.click(
|
123 |
process_documents,
|
@@ -126,10 +138,15 @@ def demo():
|
|
126 |
)
|
127 |
|
128 |
def load_model(model, temp, vector_db_state):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
load_model_btn.click(
|
135 |
load_model,
|
@@ -138,17 +155,20 @@ def demo():
|
|
138 |
)
|
139 |
|
140 |
def respond(message, chat_history):
|
141 |
-
if qa_chain.value
|
142 |
-
return "
|
143 |
-
|
144 |
-
result = qa_chain.value({"question": message, "chat_history": chat_history})
|
145 |
-
response = result["answer"]
|
146 |
-
|
147 |
-
sources = "\n".join([f"📄 Página {doc.metadata['page']+1}: {doc.page_content[:50]}..."
|
148 |
-
for doc in result.get("source_documents", [])[:2]])
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
154 |
clear_btn.click(lambda: [], outputs=[chatbot])
|
|
|
26 |
"mosaicml/mpt-7b-instruct"
|
27 |
]
|
28 |
|
29 |
+
list_llm_simple = [name.split("/")[-1] for name in list_llm]
|
30 |
|
31 |
# Função para carregar documentos PDF
|
32 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
56 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
57 |
|
58 |
progress(0.4, desc="Inicializando pipeline...")
|
59 |
+
|
60 |
+
# Define a tarefa correta para cada modelo
|
61 |
+
task = "text2text-generation" if "flan-t5" in llm_model.lower() else "text-generation"
|
62 |
+
|
63 |
+
# Configuração específica para dispositivos
|
64 |
+
device = 0 if torch.cuda.is_available() else -1
|
65 |
+
if "phi-2" in llm_model.lower() and device == 0:
|
66 |
+
device = "cuda"
|
67 |
+
|
68 |
pipeline_obj = pipeline(
|
69 |
+
task,
|
70 |
model=llm_model,
|
71 |
tokenizer=tokenizer,
|
72 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
73 |
+
device=device,
|
74 |
max_new_tokens=max_tokens,
|
75 |
do_sample=True,
|
76 |
top_k=top_k,
|
|
|
96 |
# Interface Gradio
|
97 |
def demo():
|
98 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
99 |
+
vector_db = gr.State(None)
|
100 |
+
qa_chain = gr.State(None)
|
101 |
|
102 |
gr.Markdown("## 🤖 Chatbot para PDFs com Modelos Gratuitos")
|
103 |
|
|
|
111 |
process_status = gr.Textbox(label="Status do Processamento", interactive=False)
|
112 |
|
113 |
with gr.Tab("🧠 Modelo"):
|
114 |
+
model_selector = gr.Dropdown(list_llm_simple, label="Selecione o Modelo", value=list_llm_simple[1])
|
115 |
temperature = gr.Slider(0, 1, value=0.7, label="Criatividade")
|
116 |
load_model_btn = gr.Button("Carregar Modelo")
|
117 |
model_status = gr.Textbox(label="Status do Modelo", interactive=False)
|
|
|
123 |
|
124 |
# Eventos
|
125 |
def process_documents(files, cs, co):
|
126 |
+
try:
|
127 |
+
file_paths = [f.name for f in files]
|
128 |
+
splits = load_doc(file_paths, cs, co)
|
129 |
+
db = create_db(splits, "docs")
|
130 |
+
return db, "Documentos processados!"
|
131 |
+
except Exception as e:
|
132 |
+
return None, f"Erro: {str(e)}"
|
133 |
|
134 |
process_btn.click(
|
135 |
process_documents,
|
|
|
138 |
)
|
139 |
|
140 |
def load_model(model, temp, vector_db_state):
|
141 |
+
try:
|
142 |
+
if vector_db_state is None:
|
143 |
+
raise ValueError("Processe os documentos primeiro.")
|
144 |
+
|
145 |
+
model_name = list_llm[list_llm_simple.index(model)]
|
146 |
+
qa = initialize_llmchain(model_name, temp, 512, 3, vector_db_state)
|
147 |
+
return qa, "Modelo carregado!"
|
148 |
+
except Exception as e:
|
149 |
+
return None, f"Erro: {str(e)}"
|
150 |
|
151 |
load_model_btn.click(
|
152 |
load_model,
|
|
|
155 |
)
|
156 |
|
157 |
def respond(message, chat_history):
|
158 |
+
if not qa_chain.value:
|
159 |
+
return "Erro: Modelo não carregado ou documentos não processados!", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
try:
|
162 |
+
result = qa_chain.value({"question": message, "chat_history": chat_history})
|
163 |
+
response = result["answer"]
|
164 |
+
|
165 |
+
sources = "\n".join([f"📄 Página {doc.metadata['page']+1}: {doc.page_content[:50]}..."
|
166 |
+
for doc in result.get("source_documents", [])[:2]])
|
167 |
+
|
168 |
+
chat_history.append((message, f"{response}\n\n🔍 Fontes:\n{sources}"))
|
169 |
+
return "", chat_history
|
170 |
+
except Exception as e:
|
171 |
+
return f"Erro na geração: {str(e)}", chat_history
|
172 |
|
173 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
174 |
clear_btn.click(lambda: [], outputs=[chatbot])
|