Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,188 @@
|
|
1 |
-
# gradio_interface.py
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def demo():
|
6 |
with gr.Blocks(theme="base") as demo:
|
@@ -9,22 +191,24 @@ def demo():
|
|
9 |
collection_name = gr.State()
|
10 |
|
11 |
gr.Markdown(
|
12 |
-
"""<center><h2>
|
13 |
-
<h3>Faça qualquer pergunta sobre seus
|
14 |
gr.Markdown(
|
15 |
-
"""<b>Nota:</b> Este assistente de IA, utilizando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação (RAG) a partir de seus
|
16 |
-
A interface do usuário
|
|
|
17 |
<br><b>Aviso:</b> Este espaço usa a CPU básica gratuita do Hugging Face. Algumas etapas e modelos LLM utilizados abaixo (pontos finais de inferência gratuitos) podem levar algum tempo para gerar uma resposta.
|
18 |
""")
|
19 |
|
20 |
-
with gr.Tab("Etapa 1 - Carregar
|
21 |
with gr.Row():
|
22 |
-
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus
|
|
|
23 |
|
24 |
-
with gr.Tab("Etapa 2 - Processar
|
25 |
with gr.Row():
|
26 |
db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value = "ChromaDB", type="index", info="Escolha o banco de dados vetorial")
|
27 |
-
with gr.Accordion("Opções avançadas - Divisor de texto do
|
28 |
with gr.Row():
|
29 |
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Tamanho do bloco", info="Tamanho do bloco", interactive=True)
|
30 |
with gr.Row():
|
@@ -52,7 +236,7 @@ def demo():
|
|
52 |
|
53 |
with gr.Tab("Etapa 4 - Chatbot"):
|
54 |
chatbot = gr.Chatbot(height=300)
|
55 |
-
with gr.Accordion("Avançado - Referências do
|
56 |
with gr.Row():
|
57 |
doc_source1 = gr.Textbox(label="Referência 1", lines=2, container=True, scale=20)
|
58 |
source1_page = gr.Number(label="Página", scale=1)
|
@@ -63,12 +247,13 @@ def demo():
|
|
63 |
doc_source3 = gr.Textbox(label="Referência 3", lines=2, container=True, scale=20)
|
64 |
source3_page = gr.Number(label="Página", scale=1)
|
65 |
with gr.Row():
|
66 |
-
msg = gr.Textbox(placeholder="Digite a mensagem (exemplo: '
|
67 |
with gr.Row():
|
68 |
submit_btn = gr.Button("Enviar mensagem")
|
69 |
clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa")
|
70 |
|
71 |
# Eventos de pré-processamento
|
|
|
72 |
db_btn.click(initialize_database, \
|
73 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
74 |
outputs=[vector_db, collection_name, db_progress])
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from pathlib import Path
|
11 |
+
import chromadb
|
12 |
+
from unidecode import unidecode
|
13 |
+
import re
|
14 |
+
|
15 |
+
# Lista de modelos LLM disponíveis
|
16 |
+
list_llm = [
|
17 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
18 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
19 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
20 |
+
"google/gemma-7b-it",
|
21 |
+
"google/gemma-2b-it",
|
22 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
23 |
+
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
24 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
25 |
+
"microsoft/phi-2",
|
26 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
27 |
+
"mosaicml/mpt-7b-instruct",
|
28 |
+
"tiiuae/falcon-7b-instruct",
|
29 |
+
"google/flan-t5-xxl"
|
30 |
+
]
|
31 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
32 |
+
|
33 |
+
# Função para carregar documentos PDF e dividir em chunks
|
34 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
35 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
36 |
+
pages = []
|
37 |
+
for loader in loaders:
|
38 |
+
pages.extend(loader.load())
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
40 |
+
chunk_size=chunk_size,
|
41 |
+
chunk_overlap=chunk_overlap
|
42 |
+
)
|
43 |
+
doc_splits = text_splitter.split_documents(pages)
|
44 |
+
return doc_splits
|
45 |
+
|
46 |
+
# Função para criar o banco de dados vetorial
|
47 |
+
def create_db(splits, collection_name):
|
48 |
+
embedding = HuggingFaceEmbeddings()
|
49 |
+
# Usando PersistentClient para persistir o banco de dados
|
50 |
+
new_client = chromadb.PersistentClient(path="./chroma_db")
|
51 |
+
vectordb = Chroma.from_documents(
|
52 |
+
documents=splits,
|
53 |
+
embedding=embedding,
|
54 |
+
client=new_client,
|
55 |
+
collection_name=collection_name,
|
56 |
+
)
|
57 |
+
return vectordb
|
58 |
+
|
59 |
+
# Função para inicializar a cadeia de QA com o modelo LLM
|
60 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
61 |
+
progress(0.1, desc="Inicializando tokenizer da HF...")
|
62 |
+
progress(0.5, desc="Inicializando Hub da HF...")
|
63 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
64 |
+
llm = HuggingFaceEndpoint(
|
65 |
+
repo_id=llm_model,
|
66 |
+
temperature=temperature,
|
67 |
+
max_new_tokens=max_tokens,
|
68 |
+
top_k=top_k,
|
69 |
+
load_in_8bit=True,
|
70 |
+
)
|
71 |
+
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
|
72 |
+
raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
|
73 |
+
elif llm_model == "microsoft/phi-2":
|
74 |
+
llm = HuggingFaceEndpoint(
|
75 |
+
repo_id=llm_model,
|
76 |
+
temperature=temperature,
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
top_k=top_k,
|
79 |
+
trust_remote_code=True,
|
80 |
+
torch_dtype="auto",
|
81 |
+
)
|
82 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
83 |
+
llm = HuggingFaceEndpoint(
|
84 |
+
repo_id=llm_model,
|
85 |
+
temperature=temperature,
|
86 |
+
max_new_tokens=250,
|
87 |
+
top_k=top_k,
|
88 |
+
)
|
89 |
+
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
90 |
+
raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
|
91 |
+
else:
|
92 |
+
llm = HuggingFaceEndpoint(
|
93 |
+
repo_id=llm_model,
|
94 |
+
temperature=temperature,
|
95 |
+
max_new_tokens=max_tokens,
|
96 |
+
top_k=top_k,
|
97 |
+
)
|
98 |
+
|
99 |
+
progress(0.75, desc="Definindo memória de buffer...")
|
100 |
+
memory = ConversationBufferMemory(
|
101 |
+
memory_key="chat_history",
|
102 |
+
output_key='answer',
|
103 |
+
return_messages=True
|
104 |
+
)
|
105 |
+
retriever = vector_db.as_retriever()
|
106 |
+
progress(0.8, desc="Definindo cadeia de recuperação...")
|
107 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
108 |
+
llm,
|
109 |
+
retriever=retriever,
|
110 |
+
chain_type="stuff",
|
111 |
+
memory=memory,
|
112 |
+
return_source_documents=True,
|
113 |
+
verbose=False,
|
114 |
+
)
|
115 |
+
progress(0.9, desc="Concluído!")
|
116 |
+
return qa_chain
|
117 |
+
|
118 |
+
# Função para gerar um nome de coleção válido
|
119 |
+
def create_collection_name(filepath):
|
120 |
+
collection_name = Path(filepath).stem
|
121 |
+
collection_name = collection_name.replace(" ", "-")
|
122 |
+
collection_name = unidecode(collection_name)
|
123 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
124 |
+
collection_name = collection_name[:50]
|
125 |
+
if len(collection_name) < 3:
|
126 |
+
collection_name = collection_name + 'xyz'
|
127 |
+
if not collection_name[0].isalnum():
|
128 |
+
collection_name = 'A' + collection_name[1:]
|
129 |
+
if not collection_name[-1].isalnum():
|
130 |
+
collection_name = collection_name[:-1] + 'Z'
|
131 |
+
print('Caminho do arquivo: ', filepath)
|
132 |
+
print('Nome da coleção: ', collection_name)
|
133 |
+
return collection_name
|
134 |
+
|
135 |
+
# Função para inicializar o banco de dados
|
136 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
137 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
138 |
+
progress(0.1, desc="Criando nome da coleção...")
|
139 |
+
collection_name = create_collection_name(list_file_path[0])
|
140 |
+
progress(0.25, desc="Carregando documento...")
|
141 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
142 |
+
progress(0.5, desc="Gerando banco de dados vetorial...")
|
143 |
+
vector_db = create_db(doc_splits, collection_name)
|
144 |
+
progress(0.9, desc="Concluído!")
|
145 |
+
return vector_db, collection_name, "Completo!"
|
146 |
+
|
147 |
+
# Função para inicializar o modelo LLM
|
148 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
149 |
+
llm_name = list_llm[llm_option]
|
150 |
+
print("Nome do LLM: ", llm_name)
|
151 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
152 |
+
return qa_chain, "Completo!"
|
153 |
+
|
154 |
+
# Função para formatar o histórico de conversa
|
155 |
+
def format_chat_history(message, chat_history):
|
156 |
+
formatted_chat_history = []
|
157 |
+
for user_message, bot_message in chat_history:
|
158 |
+
formatted_chat_history.append(f"Usuário: {user_message}")
|
159 |
+
formatted_chat_history.append(f"Assistente: {bot_message}")
|
160 |
+
return formatted_chat_history
|
161 |
+
|
162 |
+
# Função para realizar a conversa com o chatbot
|
163 |
+
def conversation(qa_chain, message, history):
|
164 |
+
formatted_chat_history = format_chat_history(message, history)
|
165 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
166 |
+
response_answer = response["answer"]
|
167 |
+
if response_answer.find("Resposta útil:") != -1:
|
168 |
+
response_answer = response_answer.split("Resposta útil:")[-1]
|
169 |
+
response_sources = response["source_documents"]
|
170 |
+
response_source1 = response_sources[0].page_content.strip()
|
171 |
+
response_source2 = response_sources[1].page_content.strip()
|
172 |
+
response_source3 = response_sources[2].page_content.strip()
|
173 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
174 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
175 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
176 |
+
new_history = history + [(message, response_answer)]
|
177 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
178 |
+
|
179 |
+
# Função para carregar arquivos
|
180 |
+
def upload_file(file_obj):
|
181 |
+
list_file_path = []
|
182 |
+
for idx, file in enumerate(file_obj):
|
183 |
+
file_path = file_obj.name
|
184 |
+
list_file_path.append(file_path)
|
185 |
+
return list_file_path
|
186 |
|
187 |
def demo():
|
188 |
with gr.Blocks(theme="base") as demo:
|
|
|
191 |
collection_name = gr.State()
|
192 |
|
193 |
gr.Markdown(
|
194 |
+
"""<center><h2>Chatbot baseado em PDF</center></h2>
|
195 |
+
<h3>Faça qualquer pergunta sobre seus documentos PDF</h3>""")
|
196 |
gr.Markdown(
|
197 |
+
"""<b>Nota:</b> Este assistente de IA, utilizando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação (RAG) a partir de seus documentos PDF. \
|
198 |
+
A interface do usuário mostra explicitamente várias etapas para ajudar a entender o fluxo de trabalho do RAG.
|
199 |
+
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (via memória conversacional), e inclui referências documentais para maior clareza.<br>
|
200 |
<br><b>Aviso:</b> Este espaço usa a CPU básica gratuita do Hugging Face. Algumas etapas e modelos LLM utilizados abaixo (pontos finais de inferência gratuitos) podem levar algum tempo para gerar uma resposta.
|
201 |
""")
|
202 |
|
203 |
+
with gr.Tab("Etapa 1 - Carregar PDF"):
|
204 |
with gr.Row():
|
205 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus documentos PDF (único ou múltiplos)")
|
206 |
+
# upload_btn = gr.UploadButton("Carregando documento...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
207 |
|
208 |
+
with gr.Tab("Etapa 2 - Processar documento"):
|
209 |
with gr.Row():
|
210 |
db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value = "ChromaDB", type="index", info="Escolha o banco de dados vetorial")
|
211 |
+
with gr.Accordion("Opções avançadas - Divisor de texto do documento", open=False):
|
212 |
with gr.Row():
|
213 |
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Tamanho do bloco", info="Tamanho do bloco", interactive=True)
|
214 |
with gr.Row():
|
|
|
236 |
|
237 |
with gr.Tab("Etapa 4 - Chatbot"):
|
238 |
chatbot = gr.Chatbot(height=300)
|
239 |
+
with gr.Accordion("Avançado - Referências do documento", open=False):
|
240 |
with gr.Row():
|
241 |
doc_source1 = gr.Textbox(label="Referência 1", lines=2, container=True, scale=20)
|
242 |
source1_page = gr.Number(label="Página", scale=1)
|
|
|
247 |
doc_source3 = gr.Textbox(label="Referência 3", lines=2, container=True, scale=20)
|
248 |
source3_page = gr.Number(label="Página", scale=1)
|
249 |
with gr.Row():
|
250 |
+
msg = gr.Textbox(placeholder="Digite a mensagem (exemplo: 'Sobre o que é este documento?')", container=True)
|
251 |
with gr.Row():
|
252 |
submit_btn = gr.Button("Enviar mensagem")
|
253 |
clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa")
|
254 |
|
255 |
# Eventos de pré-processamento
|
256 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
257 |
db_btn.click(initialize_database, \
|
258 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
259 |
outputs=[vector_db, collection_name, db_progress])
|