DHEIVER commited on
Commit
ca17588
·
verified ·
1 Parent(s): 80f4c28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -149
app.py CHANGED
@@ -22,8 +22,6 @@ import tqdm
22
  import accelerate
23
  import re
24
 
25
-
26
-
27
  # default_persist_directory = './chroma_HF/'
28
  list_llm = [
29
  "mistralai/Mistral-7B-Instruct-v0.2",
@@ -43,21 +41,16 @@ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
43
 
44
  # Load PDF document and create doc splits
45
  def load_doc(list_file_path, chunk_size, chunk_overlap):
46
- # Processing for one document only
47
- # loader = PyPDFLoader(file_path)
48
- # pages = loader.load()
49
  loaders = [PyPDFLoader(x) for x in list_file_path]
50
  pages = []
51
  for loader in loaders:
52
  pages.extend(loader.load())
53
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
54
  text_splitter = RecursiveCharacterTextSplitter(
55
  chunk_size = chunk_size,
56
  chunk_overlap = chunk_overlap)
57
  doc_splits = text_splitter.split_documents(pages)
58
  return doc_splits
59
 
60
-
61
  # Create vector database
62
  def create_db(splits, collection_name):
63
  embedding = HuggingFaceEmbeddings()
@@ -67,70 +60,33 @@ def create_db(splits, collection_name):
67
  embedding=embedding,
68
  client=new_client,
69
  collection_name=collection_name,
70
- # persist_directory=default_persist_directory
71
  )
72
  return vectordb
73
 
74
-
75
  # Load vector database
76
  def load_db():
77
  embedding = HuggingFaceEmbeddings()
78
  vectordb = Chroma(
79
- # persist_directory=default_persist_directory,
80
  embedding_function=embedding)
81
  return vectordb
82
 
83
-
84
  # Initialize langchain LLM chain
85
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
86
- progress(0.1, desc="Initializing HF tokenizer...")
87
- # HuggingFacePipeline uses local model
88
- # Note: it will download model locally...
89
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
90
- # progress(0.5, desc="Initializing HF pipeline...")
91
- # pipeline=transformers.pipeline(
92
- # "text-generation",
93
- # model=llm_model,
94
- # tokenizer=tokenizer,
95
- # torch_dtype=torch.bfloat16,
96
- # trust_remote_code=True,
97
- # device_map="auto",
98
- # # max_length=1024,
99
- # max_new_tokens=max_tokens,
100
- # do_sample=True,
101
- # top_k=top_k,
102
- # num_return_sequences=1,
103
- # eos_token_id=tokenizer.eos_token_id
104
- # )
105
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
106
-
107
- # HuggingFaceHub uses HF inference endpoints
108
- progress(0.5, desc="Initializing HF Hub...")
109
- # Use of trust_remote_code as model_kwargs
110
- # Warning: langchain issue
111
- # URL: https://github.com/langchain-ai/langchain/issues/6080
112
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
113
  llm = HuggingFaceEndpoint(
114
  repo_id=llm_model,
115
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
116
  temperature = temperature,
117
  max_new_tokens = max_tokens,
118
  top_k = top_k,
119
  load_in_8bit = True,
120
  )
121
  elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
122
- raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
123
- llm = HuggingFaceEndpoint(
124
- repo_id=llm_model,
125
- temperature = temperature,
126
- max_new_tokens = max_tokens,
127
- top_k = top_k,
128
- )
129
  elif llm_model == "microsoft/phi-2":
130
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
131
  llm = HuggingFaceEndpoint(
132
  repo_id=llm_model,
133
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
134
  temperature = temperature,
135
  max_new_tokens = max_tokens,
136
  top_k = top_k,
@@ -140,221 +96,172 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
140
  elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
141
  llm = HuggingFaceEndpoint(
142
  repo_id=llm_model,
143
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
144
  temperature = temperature,
145
  max_new_tokens = 250,
146
  top_k = top_k,
147
  )
148
  elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
149
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
150
- llm = HuggingFaceEndpoint(
151
- repo_id=llm_model,
152
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
153
- temperature = temperature,
154
- max_new_tokens = max_tokens,
155
- top_k = top_k,
156
- )
157
  else:
158
  llm = HuggingFaceEndpoint(
159
  repo_id=llm_model,
160
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
161
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
162
  temperature = temperature,
163
  max_new_tokens = max_tokens,
164
  top_k = top_k,
165
  )
166
 
167
- progress(0.75, desc="Defining buffer memory...")
168
  memory = ConversationBufferMemory(
169
  memory_key="chat_history",
170
  output_key='answer',
171
  return_messages=True
172
  )
173
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
174
  retriever=vector_db.as_retriever()
175
- progress(0.8, desc="Defining retrieval chain...")
176
  qa_chain = ConversationalRetrievalChain.from_llm(
177
  llm,
178
  retriever=retriever,
179
  chain_type="stuff",
180
  memory=memory,
181
- # combine_docs_chain_kwargs={"prompt": your_prompt})
182
  return_source_documents=True,
183
- #return_generated_question=False,
184
  verbose=False,
185
  )
186
- progress(0.9, desc="Done!")
187
  return qa_chain
188
 
189
-
190
  # Generate collection name for vector database
191
- # - Use filepath as input, ensuring unicode text
192
  def create_collection_name(filepath):
193
- # Extract filename without extension
194
  collection_name = Path(filepath).stem
195
- # Fix potential issues from naming convention
196
- ## Remove space
197
  collection_name = collection_name.replace(" ","-")
198
- ## ASCII transliterations of Unicode text
199
  collection_name = unidecode(collection_name)
200
- ## Remove special characters
201
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
202
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
203
- ## Limit length to 50 characters
204
  collection_name = collection_name[:50]
205
- ## Minimum length of 3 characters
206
  if len(collection_name) < 3:
207
  collection_name = collection_name + 'xyz'
208
- ## Enforce start and end as alphanumeric character
209
  if not collection_name[0].isalnum():
210
  collection_name = 'A' + collection_name[1:]
211
  if not collection_name[-1].isalnum():
212
  collection_name = collection_name[:-1] + 'Z'
213
- print('Filepath: ', filepath)
214
- print('Collection name: ', collection_name)
215
  return collection_name
216
 
217
-
218
  # Initialize database
219
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
220
- # Create list of documents (when valid)
221
  list_file_path = [x.name for x in list_file_obj if x is not None]
222
- # Create collection_name for vector database
223
- progress(0.1, desc="Creating collection name...")
224
  collection_name = create_collection_name(list_file_path[0])
225
- progress(0.25, desc="Loading document...")
226
- # Load document and create splits
227
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
228
- # Create or load vector database
229
- progress(0.5, desc="Generating vector database...")
230
- # global vector_db
231
  vector_db = create_db(doc_splits, collection_name)
232
- progress(0.9, desc="Done!")
233
- return vector_db, collection_name, "Complete!"
234
-
235
 
236
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
237
- # print("llm_option",llm_option)
238
  llm_name = list_llm[llm_option]
239
- print("llm_name: ",llm_name)
240
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
241
- return qa_chain, "Complete!"
242
-
243
 
244
  def format_chat_history(message, chat_history):
245
  formatted_chat_history = []
246
  for user_message, bot_message in chat_history:
247
- formatted_chat_history.append(f"User: {user_message}")
248
- formatted_chat_history.append(f"Assistant: {bot_message}")
249
  return formatted_chat_history
250
-
251
 
252
  def conversation(qa_chain, message, history):
253
  formatted_chat_history = format_chat_history(message, history)
254
- #print("formatted_chat_history",formatted_chat_history)
255
-
256
- # Generate response using QA chain
257
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
258
  response_answer = response["answer"]
259
- if response_answer.find("Helpful Answer:") != -1:
260
- response_answer = response_answer.split("Helpful Answer:")[-1]
261
  response_sources = response["source_documents"]
262
  response_source1 = response_sources[0].page_content.strip()
263
  response_source2 = response_sources[1].page_content.strip()
264
  response_source3 = response_sources[2].page_content.strip()
265
- # Langchain sources are zero-based
266
  response_source1_page = response_sources[0].metadata["page"] + 1
267
  response_source2_page = response_sources[1].metadata["page"] + 1
268
  response_source3_page = response_sources[2].metadata["page"] + 1
269
- # print ('chat response: ', response_answer)
270
- # print('DB source', response_sources)
271
-
272
- # Append user message and response to chat history
273
  new_history = history + [(message, response_answer)]
274
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
275
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
276
-
277
 
278
  def upload_file(file_obj):
279
  list_file_path = []
280
  for idx, file in enumerate(file_obj):
281
  file_path = file_obj.name
282
  list_file_path.append(file_path)
283
- # print(file_path)
284
- # initialize_database(file_path, progress)
285
  return list_file_path
286
 
287
-
288
  def demo():
289
- with gr.Blocks(theme="base") as demo:
290
  vector_db = gr.State()
291
  qa_chain = gr.State()
292
  collection_name = gr.State()
293
 
294
  gr.Markdown(
295
- """<center><h2>PDF-based chatbot</center></h2>
296
- <h3>Ask any questions about your PDF documents</h3>""")
297
  gr.Markdown(
298
- """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
299
- The user interface explicitely shows multiple steps to help understand the RAG workflow.
300
- This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
301
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
302
  """)
303
 
304
- with gr.Tab("Step 1 - Upload PDF"):
305
  with gr.Row():
306
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
307
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
308
 
309
- with gr.Tab("Step 2 - Process document"):
310
  with gr.Row():
311
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
312
- with gr.Accordion("Advanced options - Document text splitter", open=False):
313
  with gr.Row():
314
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
315
  with gr.Row():
316
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
317
  with gr.Row():
318
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
319
  with gr.Row():
320
- db_btn = gr.Button("Generate vector database")
321
 
322
- with gr.Tab("Step 3 - Initialize QA chain"):
323
  with gr.Row():
324
  llm_btn = gr.Radio(list_llm_simple, \
325
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
326
- with gr.Accordion("Advanced options - LLM model", open=False):
327
  with gr.Row():
328
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
329
  with gr.Row():
330
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
331
  with gr.Row():
332
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
333
  with gr.Row():
334
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
335
  with gr.Row():
336
- qachain_btn = gr.Button("Initialize Question Answering chain")
337
 
338
- with gr.Tab("Step 4 - Chatbot"):
339
  chatbot = gr.Chatbot(height=300)
340
- with gr.Accordion("Advanced - Document references", open=False):
341
  with gr.Row():
342
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
343
- source1_page = gr.Number(label="Page", scale=1)
344
  with gr.Row():
345
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
346
- source2_page = gr.Number(label="Page", scale=1)
347
  with gr.Row():
348
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
349
- source3_page = gr.Number(label="Page", scale=1)
350
  with gr.Row():
351
- msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
352
  with gr.Row():
353
- submit_btn = gr.Button("Submit message")
354
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
355
 
356
  # Preprocessing events
357
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
358
  db_btn.click(initialize_database, \
359
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
360
  outputs=[vector_db, collection_name, db_progress])
@@ -380,6 +287,5 @@ def demo():
380
  queue=False)
381
  demo.queue().launch(debug=True)
382
 
383
-
384
  if __name__ == "__main__":
385
  demo()
 
22
  import accelerate
23
  import re
24
 
 
 
25
  # default_persist_directory = './chroma_HF/'
26
  list_llm = [
27
  "mistralai/Mistral-7B-Instruct-v0.2",
 
41
 
42
  # Load PDF document and create doc splits
43
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
44
  loaders = [PyPDFLoader(x) for x in list_file_path]
45
  pages = []
46
  for loader in loaders:
47
  pages.extend(loader.load())
 
48
  text_splitter = RecursiveCharacterTextSplitter(
49
  chunk_size = chunk_size,
50
  chunk_overlap = chunk_overlap)
51
  doc_splits = text_splitter.split_documents(pages)
52
  return doc_splits
53
 
 
54
  # Create vector database
55
  def create_db(splits, collection_name):
56
  embedding = HuggingFaceEmbeddings()
 
60
  embedding=embedding,
61
  client=new_client,
62
  collection_name=collection_name,
 
63
  )
64
  return vectordb
65
 
 
66
  # Load vector database
67
  def load_db():
68
  embedding = HuggingFaceEmbeddings()
69
  vectordb = Chroma(
 
70
  embedding_function=embedding)
71
  return vectordb
72
 
 
73
  # Initialize langchain LLM chain
74
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
75
+ progress(0.1, desc="Inicializando tokenizer da HF...")
76
+ progress(0.5, desc="Inicializando Hub da HF...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
78
  llm = HuggingFaceEndpoint(
79
  repo_id=llm_model,
 
80
  temperature = temperature,
81
  max_new_tokens = max_tokens,
82
  top_k = top_k,
83
  load_in_8bit = True,
84
  )
85
  elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
86
+ raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
 
 
 
 
 
 
87
  elif llm_model == "microsoft/phi-2":
 
88
  llm = HuggingFaceEndpoint(
89
  repo_id=llm_model,
 
90
  temperature = temperature,
91
  max_new_tokens = max_tokens,
92
  top_k = top_k,
 
96
  elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
97
  llm = HuggingFaceEndpoint(
98
  repo_id=llm_model,
 
99
  temperature = temperature,
100
  max_new_tokens = 250,
101
  top_k = top_k,
102
  )
103
  elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
104
+ raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
 
 
 
 
 
 
 
105
  else:
106
  llm = HuggingFaceEndpoint(
107
  repo_id=llm_model,
 
 
108
  temperature = temperature,
109
  max_new_tokens = max_tokens,
110
  top_k = top_k,
111
  )
112
 
113
+ progress(0.75, desc="Definindo memória de buffer...")
114
  memory = ConversationBufferMemory(
115
  memory_key="chat_history",
116
  output_key='answer',
117
  return_messages=True
118
  )
 
119
  retriever=vector_db.as_retriever()
120
+ progress(0.8, desc="Definindo cadeia de recuperação...")
121
  qa_chain = ConversationalRetrievalChain.from_llm(
122
  llm,
123
  retriever=retriever,
124
  chain_type="stuff",
125
  memory=memory,
 
126
  return_source_documents=True,
 
127
  verbose=False,
128
  )
129
+ progress(0.9, desc="Concluído!")
130
  return qa_chain
131
 
 
132
  # Generate collection name for vector database
 
133
  def create_collection_name(filepath):
 
134
  collection_name = Path(filepath).stem
 
 
135
  collection_name = collection_name.replace(" ","-")
 
136
  collection_name = unidecode(collection_name)
 
 
137
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
 
138
  collection_name = collection_name[:50]
 
139
  if len(collection_name) < 3:
140
  collection_name = collection_name + 'xyz'
 
141
  if not collection_name[0].isalnum():
142
  collection_name = 'A' + collection_name[1:]
143
  if not collection_name[-1].isalnum():
144
  collection_name = collection_name[:-1] + 'Z'
145
+ print('Caminho do arquivo: ', filepath)
146
+ print('Nome da coleção: ', collection_name)
147
  return collection_name
148
 
 
149
  # Initialize database
150
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
151
  list_file_path = [x.name for x in list_file_obj if x is not None]
152
+ progress(0.1, desc="Criando nome da coleção...")
 
153
  collection_name = create_collection_name(list_file_path[0])
154
+ progress(0.25, desc="Carregando documento...")
 
155
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
156
+ progress(0.5, desc="Gerando banco de dados vetorial...")
 
 
157
  vector_db = create_db(doc_splits, collection_name)
158
+ progress(0.9, desc="Concluído!")
159
+ return vector_db, collection_name, "Completo!"
 
160
 
161
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
162
  llm_name = list_llm[llm_option]
163
+ print("Nome do LLM: ",llm_name)
164
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
165
+ return qa_chain, "Completo!"
 
166
 
167
  def format_chat_history(message, chat_history):
168
  formatted_chat_history = []
169
  for user_message, bot_message in chat_history:
170
+ formatted_chat_history.append(f"Usuário: {user_message}")
171
+ formatted_chat_history.append(f"Assistente: {bot_message}")
172
  return formatted_chat_history
 
173
 
174
  def conversation(qa_chain, message, history):
175
  formatted_chat_history = format_chat_history(message, history)
 
 
 
176
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
177
  response_answer = response["answer"]
178
+ if response_answer.find("Resposta útil:") != -1:
179
+ response_answer = response_answer.split("Resposta útil:")[-1]
180
  response_sources = response["source_documents"]
181
  response_source1 = response_sources[0].page_content.strip()
182
  response_source2 = response_sources[1].page_content.strip()
183
  response_source3 = response_sources[2].page_content.strip()
 
184
  response_source1_page = response_sources[0].metadata["page"] + 1
185
  response_source2_page = response_sources[1].metadata["page"] + 1
186
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
 
 
187
  new_history = history + [(message, response_answer)]
 
188
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
189
 
190
  def upload_file(file_obj):
191
  list_file_path = []
192
  for idx, file in enumerate(file_obj):
193
  file_path = file_obj.name
194
  list_file_path.append(file_path)
 
 
195
  return list_file_path
196
 
 
197
  def demo():
198
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
199
  vector_db = gr.State()
200
  qa_chain = gr.State()
201
  collection_name = gr.State()
202
 
203
  gr.Markdown(
204
+ """<center><h2>Chatbot baseado em PDF</center></h2>
205
+ <h3>Faça perguntas sobre seus documentos PDF</h3>""")
206
  gr.Markdown(
207
+ """<b>Nota:</b> Este assistente AI, usando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação (RAG) a partir de seus documentos PDF. \
208
+ A interface do usuário explicitamente mostra múltiplos passos para ajudar a entender o fluxo de trabalho do RAG.
209
+ Este chatbot leva em consideração perguntas anteriores ao gerar respostas (via memória conversacional) e inclui referências de documentos para maior clareza.<br>
210
+ <br><b>Aviso:</b> Este espaço usa o hardware básico gratuito da Hugging Face. Alguns passos e modelos LLM usados abaixo (endpoints de inferência gratuitos) podem levar algum tempo para gerar uma resposta.
211
  """)
212
 
213
+ with gr.Tab("Passo 1 - Carregar PDF"):
214
  with gr.Row():
215
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus documentos PDF (único ou múltiplos)")
 
216
 
217
+ with gr.Tab("Passo 2 - Processar documento"):
218
  with gr.Row():
219
+ db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value = "ChromaDB", type="index", info="Escolha seu banco de dados vetorial")
220
+ with gr.Accordion("Opções avançadas - Divisor de texto do documento", open=False):
221
  with gr.Row():
222
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Tamanho do chunk", info="Tamanho do chunk", interactive=True)
223
  with gr.Row():
224
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Sobreposição do chunk", info="Sobreposição do chunk", interactive=True)
225
  with gr.Row():
226
+ db_progress = gr.Textbox(label="Inicialização do banco de dados vetorial", value="Nenhum")
227
  with gr.Row():
228
+ db_btn = gr.Button("Gerar banco de dados vetorial")
229
 
230
+ with gr.Tab("Passo 3 - Inicializar cadeia de QA"):
231
  with gr.Row():
232
  llm_btn = gr.Radio(list_llm_simple, \
233
+ label="Modelos LLM", value = list_llm_simple[0], type="index", info="Escolha seu modelo LLM")
234
+ with gr.Accordion("Opções avançadas - Modelo LLM", open=False):
235
  with gr.Row():
236
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura do modelo", interactive=True)
237
  with gr.Row():
238
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Máximo de Tokens", info="Máximo de tokens do modelo", interactive=True)
239
  with gr.Row():
240
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Amostras top-k", info="Amostras top-k do modelo", interactive=True)
241
  with gr.Row():
242
+ llm_progress = gr.Textbox(value="Nenhum",label="Inicialização da cadeia de QA")
243
  with gr.Row():
244
+ qachain_btn = gr.Button("Inicializar cadeia de Perguntas e Respostas")
245
 
246
+ with gr.Tab("Passo 4 - Chatbot"):
247
  chatbot = gr.Chatbot(height=300)
248
+ with gr.Accordion("Avançado - Referências de documentos", open=False):
249
  with gr.Row():
250
+ doc_source1 = gr.Textbox(label="Referência 1", lines=2, container=True, scale=20)
251
+ source1_page = gr.Number(label="Página", scale=1)
252
  with gr.Row():
253
+ doc_source2 = gr.Textbox(label="Referência 2", lines=2, container=True, scale=20)
254
+ source2_page = gr.Number(label="Página", scale=1)
255
  with gr.Row():
256
+ doc_source3 = gr.Textbox(label="Referência 3", lines=2, container=True, scale=20)
257
+ source3_page = gr.Number(label="Página", scale=1)
258
  with gr.Row():
259
+ msg = gr.Textbox(placeholder="Digite uma mensagem (ex: 'Sobre o que é este documento?')", container=True)
260
  with gr.Row():
261
+ submit_btn = gr.Button("Enviar mensagem")
262
+ clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa")
263
 
264
  # Preprocessing events
 
265
  db_btn.click(initialize_database, \
266
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
267
  outputs=[vector_db, collection_name, db_progress])
 
287
  queue=False)
288
  demo.queue().launch(debug=True)
289
 
 
290
  if __name__ == "__main__":
291
  demo()