import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb from unidecode import unidecode import re # Lista de modelos LLM disponíveis list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # Função para carregar documentos PDF e dividir em chunks def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits # Função para criar o banco de dados vetorial def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() # Usando PersistentClient para persistir o banco de dados new_client = chromadb.PersistentClient(path="./chroma_db") vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb # Função para inicializar a cadeia de QA com o modelo LLM def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.1, desc="Inicializando tokenizer da HF...") progress(0.5, desc="Inicializando Hub da HF...") if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]: raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito") elif llm_model == "microsoft/phi-2": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, trust_remote_code=True, torch_dtype="auto", ) elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=250, top_k=top_k, ) elif llm_model == "meta-llama/Llama-2-7b-chat-hf": raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...") else: llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.75, desc="Definindo memória de buffer...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Definindo cadeia de recuperação...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Concluído!") return qa_chain # Função para gerar um nome de coleção válido def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ", "-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' print('Caminho do arquivo: ', filepath) print('Nome da coleção: ', collection_name) return collection_name # Função para inicializar o banco de dados def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Criando nome da coleção...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Carregando documento...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Gerando banco de dados vetorial...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Concluído!") return vector_db, collection_name, "Completo!" # Função para inicializar o modelo LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = list_llm[llm_option] print("Nome do LLM: ", llm_name) qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Completo!" # Função para formatar o histórico de conversa def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"Usuário: {user_message}") formatted_chat_history.append(f"Assistente: {bot_message}") return formatted_chat_history # Função para realizar a conversa com o chatbot def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Resposta útil:") != -1: response_answer = response_answer.split("Resposta útil:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page # Função para carregar arquivos def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """