Spaces:
Runtime error
Runtime error
App init.
Browse files- app.py +367 -0
- dumpy.py +52 -0
- requirements.txt +72 -0
app.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
from typing import Dict, Tuple
|
5 |
+
from uuid import UUID
|
6 |
+
|
7 |
+
import altair as alt
|
8 |
+
import argilla as rg
|
9 |
+
from argilla.feedback import FeedbackDataset
|
10 |
+
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
|
11 |
+
import gradio as gr
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
"""
|
15 |
+
This is the main file for the dashboard application. It contains the main function and the functions to obtain the data and create the charts.
|
16 |
+
It's designed as a template to recreate the dashboard for the prompt translation project of any language.
|
17 |
+
|
18 |
+
To create a new dashboard, you need several environment variables, that you can easily set in the HuggingFace Space that you are using to host the dashboard:
|
19 |
+
|
20 |
+
- SOURCE_DATASET: The dataset id of the source dataset
|
21 |
+
- SOURCE_WORKSPACE: The workspace id of the source dataset
|
22 |
+
- TARGET_RECORDS: The number of records that you have as a target to annotate. We usually set this to 500.
|
23 |
+
- ARGILLA_API_URL: Link to the Huggingface Space where the annotation effort is being hosted. For example, the Spanish one is https://somosnlp-dibt-prompt-translation-for-es.hf.space/
|
24 |
+
- ARGILLA_API_KEY: The API key to access the Huggingface Space. Please, write this as a secret in the Huggingface Space configuration.
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Translation of legends and titles
|
28 |
+
ANNOTATED = 'Anotace'
|
29 |
+
NUMBER_ANNOTATED = 'Celkem anotacΓ'
|
30 |
+
PENDING = 'K anotovΓ‘nΓ'
|
31 |
+
|
32 |
+
NUMBER_ANNOTATORS = "PoΔet anotΓ‘torΕ―"
|
33 |
+
NAME = 'UΕΎivatelskΓ© jmΓ©no'
|
34 |
+
NUMBER_ANNOTATIONS = 'PoΔet anotacΓ'
|
35 |
+
|
36 |
+
CATEGORY = 'Kategorie'
|
37 |
+
|
38 |
+
def obtain_source_target_datasets() -> (
|
39 |
+
Tuple[
|
40 |
+
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
|
41 |
+
]
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
This function returns the source and target datasets to be used in the application.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
|
48 |
+
|
49 |
+
"""
|
50 |
+
|
51 |
+
# Obtain the public dataset and see how many pending records are there
|
52 |
+
source_dataset = rg.FeedbackDataset.from_argilla(
|
53 |
+
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
|
54 |
+
)
|
55 |
+
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
|
56 |
+
|
57 |
+
# Obtain a list of users from the private workspace
|
58 |
+
# target_dataset = rg.FeedbackDataset.from_argilla(
|
59 |
+
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
|
60 |
+
# )
|
61 |
+
|
62 |
+
target_dataset = source_dataset.filter_by(response_status=["submitted"])
|
63 |
+
|
64 |
+
return filtered_source_dataset, target_dataset
|
65 |
+
|
66 |
+
|
67 |
+
def get_user_annotations_dictionary(
|
68 |
+
dataset: FeedbackDataset | RemoteFeedbackDataset,
|
69 |
+
) -> Dict[str, int]:
|
70 |
+
"""
|
71 |
+
This function returns a dictionary with the username as the key and the number of annotations as the value.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
dataset: The dataset to be analyzed.
|
75 |
+
Returns:
|
76 |
+
A dictionary with the username as the key and the number of annotations as the value.
|
77 |
+
"""
|
78 |
+
output = {}
|
79 |
+
for record in dataset:
|
80 |
+
for response in record.responses:
|
81 |
+
if str(response.user_id) not in output.keys():
|
82 |
+
output[str(response.user_id)] = 1
|
83 |
+
else:
|
84 |
+
output[str(response.user_id)] += 1
|
85 |
+
|
86 |
+
# Changing the name of the keys, from the id to the username
|
87 |
+
for key in list(output.keys()):
|
88 |
+
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
|
89 |
+
|
90 |
+
return output
|
91 |
+
|
92 |
+
|
93 |
+
def donut_chart_total() -> alt.Chart:
|
94 |
+
"""
|
95 |
+
This function returns a donut chart with the progress of the total annotations.
|
96 |
+
Counts each record that has been annotated at least once.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
An altair chart with the donut chart.
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Load your data
|
103 |
+
annotated_records = len(target_dataset)
|
104 |
+
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
|
105 |
+
|
106 |
+
# Prepare data for the donut chart
|
107 |
+
source = pd.DataFrame(
|
108 |
+
{
|
109 |
+
"values": [annotated_records, pending_records],
|
110 |
+
"category": [ANNOTATED, PENDING],
|
111 |
+
"colors": ["#4CAF50", "#757575"], # Green for Completed, Grey for Remaining
|
112 |
+
}
|
113 |
+
)
|
114 |
+
|
115 |
+
base = alt.Chart(source).encode(
|
116 |
+
theta=alt.Theta("values:Q", stack=True),
|
117 |
+
radius=alt.Radius(
|
118 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
119 |
+
),
|
120 |
+
color=alt.Color("category:N", legend=alt.Legend(title=CATEGORY)),
|
121 |
+
)
|
122 |
+
|
123 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
124 |
+
|
125 |
+
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
|
126 |
+
|
127 |
+
chart = c1 + c2
|
128 |
+
|
129 |
+
return chart
|
130 |
+
|
131 |
+
|
132 |
+
def kpi_chart_remaining() -> alt.Chart:
|
133 |
+
"""
|
134 |
+
This function returns a KPI chart with the remaining amount of records to be annotated.
|
135 |
+
Returns:
|
136 |
+
An altair chart with the KPI chart.
|
137 |
+
"""
|
138 |
+
|
139 |
+
pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
|
140 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
141 |
+
data = pd.DataFrame({"Category": [PENDING], "Value": [pending_records]})
|
142 |
+
|
143 |
+
# Create Altair chart
|
144 |
+
chart = (
|
145 |
+
alt.Chart(data)
|
146 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
|
147 |
+
.encode(text="Value:N")
|
148 |
+
.properties(title=PENDING, width=250, height=200)
|
149 |
+
)
|
150 |
+
|
151 |
+
return chart
|
152 |
+
|
153 |
+
|
154 |
+
def kpi_chart_submitted() -> alt.Chart:
|
155 |
+
"""
|
156 |
+
This function returns a KPI chart with the total amount of records that have been annotated.
|
157 |
+
Returns:
|
158 |
+
An altair chart with the KPI chart.
|
159 |
+
"""
|
160 |
+
|
161 |
+
total = len(target_dataset)
|
162 |
+
|
163 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
164 |
+
data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total]})
|
165 |
+
|
166 |
+
# Create Altair chart
|
167 |
+
chart = (
|
168 |
+
alt.Chart(data)
|
169 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
170 |
+
.encode(text="Value:N")
|
171 |
+
.properties(title=NUMBER_ANNOTATED, width=250, height=200)
|
172 |
+
)
|
173 |
+
|
174 |
+
return chart
|
175 |
+
|
176 |
+
|
177 |
+
def kpi_chart_total_annotators() -> alt.Chart:
|
178 |
+
"""
|
179 |
+
This function returns a KPI chart with the total amount of annotators.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
An altair chart with the KPI chart.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# Obtain the total amount of annotators
|
186 |
+
total_annotators = len(user_ids_annotations)
|
187 |
+
|
188 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
189 |
+
data = pd.DataFrame(
|
190 |
+
{"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]}
|
191 |
+
)
|
192 |
+
|
193 |
+
# Create Altair chart
|
194 |
+
chart = (
|
195 |
+
alt.Chart(data)
|
196 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
197 |
+
.encode(text="Value:N")
|
198 |
+
.properties(title=NUMBER_ANNOTATORS, width=250, height=200)
|
199 |
+
)
|
200 |
+
|
201 |
+
return chart
|
202 |
+
|
203 |
+
|
204 |
+
def render_hub_user_link(hub_id:str) -> str:
|
205 |
+
"""
|
206 |
+
This function returns a link to the user's profile on Hugging Face.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
hub_id: The user's id on Hugging Face.
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
A string with the link to the user's profile on Hugging Face.
|
213 |
+
"""
|
214 |
+
link = f"https://huggingface.co/{hub_id}"
|
215 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
|
216 |
+
|
217 |
+
|
218 |
+
def obtain_top_users(user_ids_annotations: Dict[str, int], N: int = 50) -> pd.DataFrame:
|
219 |
+
"""
|
220 |
+
This function returns the top N users with the most annotations.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
A pandas dataframe with the top N users with the most annotations.
|
227 |
+
"""
|
228 |
+
|
229 |
+
dataframe = pd.DataFrame(
|
230 |
+
user_ids_annotations.items(), columns=[NAME, NUMBER_ANNOTATIONS]
|
231 |
+
)
|
232 |
+
dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
|
233 |
+
dataframe = dataframe.sort_values(by=NUMBER_ANNOTATIONS, ascending=False)
|
234 |
+
return dataframe.head(N)
|
235 |
+
|
236 |
+
|
237 |
+
def fetch_data() -> None:
|
238 |
+
"""
|
239 |
+
This function fetches the data from the source and target datasets and updates the global variables.
|
240 |
+
"""
|
241 |
+
|
242 |
+
print(f"Starting to fetch data: {datetime.datetime.now()}")
|
243 |
+
|
244 |
+
global source_dataset, target_dataset, user_ids_annotations, annotated, remaining, percentage_completed, top_dataframe
|
245 |
+
source_dataset, target_dataset = obtain_source_target_datasets()
|
246 |
+
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
247 |
+
|
248 |
+
annotated = len(target_dataset)
|
249 |
+
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
|
250 |
+
percentage_completed = round(
|
251 |
+
(annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
|
252 |
+
)
|
253 |
+
|
254 |
+
# Print the current date and time
|
255 |
+
print(f"Data fetched: {datetime.datetime.now()}")
|
256 |
+
|
257 |
+
|
258 |
+
def get_top(N = 50) -> pd.DataFrame:
|
259 |
+
"""
|
260 |
+
This function returns the top N users with the most annotations.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
N: The number of users to be returned. 50 by default
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
A pandas dataframe with the top N users with the most annotations.
|
267 |
+
"""
|
268 |
+
|
269 |
+
return obtain_top_users(user_ids_annotations, N=N)
|
270 |
+
|
271 |
+
|
272 |
+
def main() -> None:
|
273 |
+
|
274 |
+
# Connect to the space with rg.init()
|
275 |
+
rg.init(
|
276 |
+
api_url=os.getenv("ARGILLA_API_URL"),
|
277 |
+
api_key=os.getenv("ARGILLA_API_KEY"),
|
278 |
+
)
|
279 |
+
|
280 |
+
# Fetch the data initially
|
281 |
+
fetch_data()
|
282 |
+
|
283 |
+
# To avoid the orange border for the Gradio elements that are in constant loading
|
284 |
+
css = """
|
285 |
+
.generating {
|
286 |
+
border: none;
|
287 |
+
}
|
288 |
+
"""
|
289 |
+
|
290 |
+
with gr.Blocks(css=css) as demo:
|
291 |
+
gr.Markdown(
|
292 |
+
"""
|
293 |
+
# π [YOUR LANGUAGE] - Multilingual Prompt Evaluation Project
|
294 |
+
|
295 |
+
Hugging Face and @argilla are developing [Multilingual Prompt Evaluation Project](https://github.com/huggingface/data-is-better-together/tree/main/prompt_translation) project. It is an open multilingual benchmark for evaluating language models, and of course, also for [YOUR LANGUAGE].
|
296 |
+
|
297 |
+
## The goal is to translate 500 Prompts
|
298 |
+
And as always: data is needed for that! The community selected the best 500 prompts that will form the benchmark. In English, of course.
|
299 |
+
**That's why we need your help**: if we all translate the 500 prompts, we can add [YOUR LANGUAGE] to the leaderboard.
|
300 |
+
|
301 |
+
## How to participate
|
302 |
+
Participating is easy. Go to the [annotation space][add a link to your annotation dataset], log in or create a Hugging Face account, and you can start working.
|
303 |
+
Thanks in advance! Oh, and we'll give you a little push: GPT4 has already prepared a translation suggestion for you.
|
304 |
+
"""
|
305 |
+
)
|
306 |
+
|
307 |
+
gr.Markdown(
|
308 |
+
f"""
|
309 |
+
## π Current Progress
|
310 |
+
This is what we've achieved so far!
|
311 |
+
"""
|
312 |
+
)
|
313 |
+
with gr.Row():
|
314 |
+
|
315 |
+
kpi_submitted_plot = gr.Plot(label="Plot")
|
316 |
+
demo.load(
|
317 |
+
kpi_chart_submitted,
|
318 |
+
inputs=[],
|
319 |
+
outputs=[kpi_submitted_plot],
|
320 |
+
)
|
321 |
+
|
322 |
+
kpi_remaining_plot = gr.Plot(label="Plot")
|
323 |
+
demo.load(
|
324 |
+
kpi_chart_remaining,
|
325 |
+
inputs=[],
|
326 |
+
outputs=[kpi_remaining_plot],
|
327 |
+
)
|
328 |
+
|
329 |
+
donut_total_plot = gr.Plot(label="Plot")
|
330 |
+
demo.load(
|
331 |
+
donut_chart_total,
|
332 |
+
inputs=[],
|
333 |
+
outputs=[donut_total_plot],
|
334 |
+
)
|
335 |
+
|
336 |
+
gr.Markdown(
|
337 |
+
"""
|
338 |
+
## πΎ Hall of Fame
|
339 |
+
Here you can see the top contributors and the number of annotations they have made.
|
340 |
+
"""
|
341 |
+
)
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
|
345 |
+
kpi_hall_plot = gr.Plot(label="Plot")
|
346 |
+
demo.load(
|
347 |
+
kpi_chart_total_annotators, inputs=[], outputs=[kpi_hall_plot]
|
348 |
+
)
|
349 |
+
|
350 |
+
top_df_plot = gr.Dataframe(
|
351 |
+
headers=[NAME, NUMBER_ANNOTATIONS],
|
352 |
+
datatype=[
|
353 |
+
"markdown",
|
354 |
+
"number",
|
355 |
+
],
|
356 |
+
row_count=50,
|
357 |
+
col_count=(2, "fixed"),
|
358 |
+
interactive=False,
|
359 |
+
)
|
360 |
+
demo.load(get_top, None, [top_df_plot])
|
361 |
+
|
362 |
+
# Launch the Gradio interface
|
363 |
+
demo.launch()
|
364 |
+
|
365 |
+
|
366 |
+
if __name__ == "__main__":
|
367 |
+
main()
|
dumpy.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
import argilla as rg
|
6 |
+
from huggingface_hub import HfApi
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
logger.setLevel(logging.INFO)
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
logger.info("*** Initializing Argilla session ***")
|
13 |
+
rg.init(
|
14 |
+
api_url=os.getenv("ARGILLA_API_URL"),
|
15 |
+
api_key=os.getenv("ARGILLA_API_KEY"),
|
16 |
+
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
17 |
+
)
|
18 |
+
|
19 |
+
logger.info("*** Fetching dataset from Argilla ***")
|
20 |
+
dataset = rg.FeedbackDataset.from_argilla(
|
21 |
+
os.getenv("SOURCE_DATASET"),
|
22 |
+
workspace=os.getenv("SOURCE_WORKSPACE"),
|
23 |
+
)
|
24 |
+
logger.info("*** Filtering records by `response_status` ***")
|
25 |
+
dataset = dataset.filter_by(response_status=["submitted"]) # type: ignore
|
26 |
+
|
27 |
+
logger.info("*** Calculating users and annotation count ***")
|
28 |
+
output = {}
|
29 |
+
for record in dataset.records:
|
30 |
+
for response in record.responses:
|
31 |
+
if response.user_id not in output:
|
32 |
+
output[response.user_id] = 0
|
33 |
+
output[response.user_id] += 1
|
34 |
+
|
35 |
+
for key in list(output.keys()):
|
36 |
+
output[rg.User.from_id(key).username] = output.pop(key)
|
37 |
+
|
38 |
+
logger.info("*** Users and annotation count successfully calculated! ***")
|
39 |
+
|
40 |
+
logger.info("*** Dumping Python dict into `stats.json` ***")
|
41 |
+
with open("stats.json", "w") as file:
|
42 |
+
json.dump(output, file, indent=4)
|
43 |
+
|
44 |
+
logger.info("*** Uploading `stats.json` to Hugging Face Hub ***")
|
45 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
46 |
+
api.upload_file(
|
47 |
+
path_or_fileobj="stats.json",
|
48 |
+
path_in_repo="stats.json",
|
49 |
+
repo_id="DIBT/prompt-collective-dashboard",
|
50 |
+
repo_type="space",
|
51 |
+
)
|
52 |
+
logger.info("*** `stats.json` successfully uploaded to Hugging Face Hub! ***")
|
requirements.txt
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.2.0
|
3 |
+
annotated-types==0.6.0
|
4 |
+
anyio==4.2.0
|
5 |
+
apscheduler==3.10.4
|
6 |
+
argilla==1.23.0
|
7 |
+
attrs==23.2.0
|
8 |
+
backoff==2.2.1
|
9 |
+
certifi==2024.2.2
|
10 |
+
charset-normalizer==3.3.2
|
11 |
+
click==8.1.7
|
12 |
+
colorama==0.4.6
|
13 |
+
contourpy==1.2.0
|
14 |
+
cycler==0.12.1
|
15 |
+
Deprecated==1.2.14
|
16 |
+
exceptiongroup==1.2.0
|
17 |
+
fastapi==0.109.2
|
18 |
+
ffmpy==0.3.1
|
19 |
+
filelock==3.13.1
|
20 |
+
fonttools==4.48.1
|
21 |
+
fsspec==2024.2.0
|
22 |
+
gradio==4.17.0
|
23 |
+
gradio_client==0.9.0
|
24 |
+
h11==0.14.0
|
25 |
+
httpcore==1.0.2
|
26 |
+
httpx==0.26.0
|
27 |
+
huggingface-hub==0.20.3
|
28 |
+
idna==3.6
|
29 |
+
importlib-resources==6.1.1
|
30 |
+
Jinja2==3.1.3
|
31 |
+
jsonschema==4.21.1
|
32 |
+
jsonschema-specifications==2023.12.1
|
33 |
+
kiwisolver==1.4.5
|
34 |
+
markdown-it-py==3.0.0
|
35 |
+
MarkupSafe==2.1.5
|
36 |
+
matplotlib==3.8.2
|
37 |
+
mdurl==0.1.2
|
38 |
+
monotonic==1.6
|
39 |
+
numpy==1.23.5
|
40 |
+
orjson==3.9.13
|
41 |
+
packaging==23.2
|
42 |
+
pandas==1.5.3
|
43 |
+
pillow==10.2.0
|
44 |
+
pydantic==2.6.1
|
45 |
+
pydantic_core==2.16.2
|
46 |
+
pydub==0.25.1
|
47 |
+
Pygments==2.17.2
|
48 |
+
pyparsing==3.1.1
|
49 |
+
python-dateutil==2.8.2
|
50 |
+
python-multipart==0.0.7
|
51 |
+
pytz==2024.1
|
52 |
+
PyYAML==6.0.1
|
53 |
+
referencing==0.33.0
|
54 |
+
requests==2.31.0
|
55 |
+
rich==13.7.0
|
56 |
+
rpds-py==0.17.1
|
57 |
+
ruff==0.2.1
|
58 |
+
semantic-version==2.10.0
|
59 |
+
shellingham==1.5.4
|
60 |
+
six==1.16.0
|
61 |
+
sniffio==1.3.0
|
62 |
+
starlette==0.36.3
|
63 |
+
tomlkit==0.12.0
|
64 |
+
toolz==0.12.1
|
65 |
+
tqdm==4.66.1
|
66 |
+
typer==0.9.0
|
67 |
+
typing_extensions==4.9.0
|
68 |
+
urllib3==2.2.0
|
69 |
+
uvicorn==0.27.0.post1
|
70 |
+
vega-datasets==0.9.0
|
71 |
+
websockets==11.0.3
|
72 |
+
wrapt==1.14.1
|