|
import os |
|
from typing import Dict, Tuple |
|
from uuid import UUID |
|
|
|
import altair as alt |
|
import argilla as rg |
|
from argilla.feedback import FeedbackDataset |
|
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset |
|
import gradio as gr |
|
import pandas as pd |
|
|
|
|
|
def obtain_source_target_datasets() -> ( |
|
Tuple[ |
|
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset |
|
] |
|
): |
|
""" |
|
This function returns the source and target datasets to be used in the application. |
|
|
|
Returns: |
|
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'. |
|
|
|
""" |
|
|
|
|
|
source_dataset = rg.FeedbackDataset.from_argilla( |
|
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE") |
|
) |
|
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"]) |
|
|
|
|
|
target_dataset = rg.FeedbackDataset.from_argilla( |
|
os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE") |
|
) |
|
|
|
return filtered_source_dataset, target_dataset |
|
|
|
|
|
def get_user_annotations_dictionary( |
|
dataset: FeedbackDataset | RemoteFeedbackDataset, |
|
) -> Dict[str, int]: |
|
""" |
|
This function returns a dictionary with the username as the key and the number of annotations as the value. |
|
|
|
Args: |
|
dataset: The dataset to be analyzed. |
|
Returns: |
|
A dictionary with the username as the key and the number of annotations as the value. |
|
""" |
|
output = {} |
|
for record in dataset: |
|
for response in record.responses: |
|
if str(response.user_id) not in output.keys(): |
|
output[str(response.user_id)] = 1 |
|
else: |
|
output[str(response.user_id)] += 1 |
|
|
|
|
|
for key in list(output.keys()): |
|
output[rg.User.from_id(UUID(key)).username] = output.pop(key) |
|
|
|
return output |
|
|
|
def donut_chart() -> alt.Chart: |
|
|
|
source_dataset, results = obtain_source_target_datasets() |
|
pending_records = len(source_dataset) |
|
annotated_records = len(results) |
|
|
|
|
|
source = pd.DataFrame({ |
|
"values": [annotated_records, pending_records], |
|
"category": ["Completed", "Remaining"], |
|
"colors": ["#4CAF50", "#757575"] |
|
}) |
|
|
|
base = alt.Chart(source).encode( |
|
theta=alt.Theta("values:Q", stack=True), |
|
radius=alt.Radius( |
|
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20) |
|
), |
|
color=alt.Color("category:N", legend=alt.Legend(title="Category")), |
|
) |
|
|
|
c1 = base.mark_arc(innerRadius=20, stroke="#fff") |
|
|
|
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q") |
|
|
|
chart = c1 + c2 |
|
|
|
return chart |
|
|
|
|
|
|
|
|
|
def kpi_chart() -> alt.Chart: |
|
""" |
|
This function returns a KPI chart with the total amount of annotators. |
|
|
|
Returns: |
|
An altair chart with the KPI chart. |
|
""" |
|
|
|
|
|
_, target_dataset = obtain_source_target_datasets() |
|
user_ids_annotations = get_user_annotations_dictionary(target_dataset) |
|
total_annotators = len(user_ids_annotations) |
|
|
|
|
|
data = pd.DataFrame({"Category": ["Total Contributors"], "Value": [total_annotators]}) |
|
|
|
|
|
chart = ( |
|
alt.Chart(data) |
|
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") |
|
.encode(text="Value:N") |
|
.properties(title="Number of Contributors", width=250, height=200) |
|
) |
|
|
|
return chart |
|
|
|
|
|
def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame: |
|
""" |
|
This function returns the top 5 users with the most annotations. |
|
|
|
Args: |
|
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value. |
|
|
|
Returns: |
|
A pandas dataframe with the top 5 users with the most annotations. |
|
""" |
|
|
|
dataframe = pd.DataFrame( |
|
user_ids_annotations.items(), columns=["Name", "Submitted Responses"] |
|
) |
|
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False) |
|
return dataframe.head(10) |
|
|
|
|
|
def main() -> None: |
|
|
|
|
|
rg.init( |
|
api_url=os.getenv("ARGILLA_API_URL"), |
|
api_key=os.getenv("ARGILLA_API_KEY"), |
|
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}, |
|
) |
|
|
|
source_dataset, target_dataset = obtain_source_target_datasets() |
|
user_ids_annotations = get_user_annotations_dictionary(target_dataset) |
|
|
|
top5_dataframe = obtain_top_5_users(user_ids_annotations) |
|
|
|
annotated = len(target_dataset) |
|
remaining = int(os.getenv("TARGET_RECORDS")) - annotated |
|
percentage_completed = round((annotated / int(os.getenv("TARGET_RECORDS"))) * 100,1) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# 🗣️ The Prompt Collective Dashboad |
|
|
|
This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community. |
|
If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective). |
|
""" |
|
) |
|
gr.Markdown( |
|
f""" |
|
## 🚀 Progress |
|
<h3> {annotated}({percentage_completed}%) are completed</h3> |
|
<h3> {remaining} remaining to reach the target</h3> |
|
""" |
|
) |
|
plot = gr.Plot(label="Plot") |
|
demo.load( |
|
donut_chart, |
|
inputs=[], |
|
outputs=[plot], |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
## 👾 Contributors Hall of Fame |
|
The number of all contributors and the top 10 contributors: |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
|
|
plot2 = gr.Plot(label="Plot") |
|
demo.load( |
|
kpi_chart, |
|
inputs=[], |
|
outputs=[plot2], |
|
) |
|
|
|
gr.Dataframe( |
|
value=top5_dataframe, |
|
headers=["Name", "Submitted Responses"], |
|
datatype=[ |
|
"str", |
|
"number", |
|
], |
|
row_count=10, |
|
col_count=(2, "fixed"), |
|
interactive=False, |
|
), |
|
|
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|