Spaces:
Runtime error
Runtime error
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import re
|
4 |
+
from datasets import Dataset
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForTokenClassification,
|
7 |
+
AutoTokenizer,
|
8 |
+
Trainer,
|
9 |
+
TrainingArguments,
|
10 |
+
DataCollatorForTokenClassification,
|
11 |
+
)
|
12 |
+
from huggingface_hub import notebook_login
|
13 |
+
|
14 |
+
# Login to Hugging Face Hub (Make sure your Space is set to private if needed)
|
15 |
+
notebook_login()
|
16 |
+
|
17 |
+
# Step 1: Load Luxury Fashion Dataset (Replace with actual dataset)
|
18 |
+
df = pd.read_csv("luxury_apparel_data.csv") # Update with correct dataset file
|
19 |
+
|
20 |
+
# Keep only relevant columns
|
21 |
+
df = df[['brand', 'category', 'description', 'price']].dropna()
|
22 |
+
|
23 |
+
# Generate search queries from dataset
|
24 |
+
df['query'] = df.apply(lambda x: f"{x['brand']} {x['category']} under {x['price']} AED", axis=1)
|
25 |
+
|
26 |
+
# Step 2: Tokenization
|
27 |
+
model_name = "dslim/bert-base-NER"
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
|
30 |
+
def tokenize_batch(batch):
|
31 |
+
return tokenizer(batch['query'], padding=True, truncation=True)
|
32 |
+
|
33 |
+
# Convert dataframe into Hugging Face dataset
|
34 |
+
hf_dataset = Dataset.from_pandas(df[['query']])
|
35 |
+
hf_dataset = hf_dataset.map(tokenize_batch, batched=True)
|
36 |
+
|
37 |
+
# Step 3: Fine-tune the Pretrained NER Model
|
38 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
39 |
+
|
40 |
+
training_args = TrainingArguments(
|
41 |
+
output_dir="./luxury_ner_model",
|
42 |
+
evaluation_strategy="epoch",
|
43 |
+
save_strategy="epoch",
|
44 |
+
per_device_train_batch_size=8,
|
45 |
+
per_device_eval_batch_size=8,
|
46 |
+
num_train_epochs=3,
|
47 |
+
logging_dir="./logs",
|
48 |
+
logging_steps=500,
|
49 |
+
)
|
50 |
+
|
51 |
+
trainer = Trainer(
|
52 |
+
model=model,
|
53 |
+
args=training_args,
|
54 |
+
train_dataset=hf_dataset,
|
55 |
+
eval_dataset=hf_dataset,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
data_collator=DataCollatorForTokenClassification(tokenizer),
|
58 |
+
)
|
59 |
+
|
60 |
+
trainer.train()
|
61 |
+
|
62 |
+
# Save model to Hugging Face Hub
|
63 |
+
model.push_to_hub("luxury-fashion-ner")
|
64 |
+
tokenizer.push_to_hub("luxury-fashion-ner")
|