Spaces:
Sleeping
Sleeping
Rename api.py to fast_api.py
Browse files- api.py β fast_api.py +31 -3
api.py β fast_api.py
RENAMED
@@ -1,6 +1,7 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from transformers import pipeline
|
3 |
import uvicorn
|
|
|
4 |
|
5 |
# Load trained model
|
6 |
model_name = "DINGOLANI/distilbert-ner-v2"
|
@@ -10,7 +11,7 @@ try:
|
|
10 |
except Exception as e:
|
11 |
raise RuntimeError(f"Failed to load model: {e}")
|
12 |
|
13 |
-
#
|
14 |
label_map = {
|
15 |
"LABEL_1": "B-BRAND",
|
16 |
"LABEL_2": "I-BRAND",
|
@@ -45,6 +46,8 @@ def predict(query: str):
|
|
45 |
for label in result:
|
46 |
label["score"] = float(label["score"])
|
47 |
|
|
|
|
|
48 |
structured_output = {}
|
49 |
prev_label = None
|
50 |
prev_word = None
|
@@ -60,7 +63,9 @@ def predict(query: str):
|
|
60 |
if prev_label == entity and prev_word:
|
61 |
structured_output[entity][-1] += word[2:]
|
62 |
else:
|
63 |
-
structured_output.setdefault(entity, []).append(word)
|
|
|
|
|
64 |
|
65 |
prev_label = entity
|
66 |
prev_word = word
|
@@ -74,5 +79,28 @@ def predict(query: str):
|
|
74 |
except Exception as e:
|
75 |
raise HTTPException(status_code=500, detail=f"Error processing request: {e}")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if __name__ == "__main__":
|
78 |
-
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from transformers import pipeline
|
3 |
import uvicorn
|
4 |
+
import streamlit as st
|
5 |
|
6 |
# Load trained model
|
7 |
model_name = "DINGOLANI/distilbert-ner-v2"
|
|
|
11 |
except Exception as e:
|
12 |
raise RuntimeError(f"Failed to load model: {e}")
|
13 |
|
14 |
+
# Corrected label mapping based on expected training labels
|
15 |
label_map = {
|
16 |
"LABEL_1": "B-BRAND",
|
17 |
"LABEL_2": "I-BRAND",
|
|
|
46 |
for label in result:
|
47 |
label["score"] = float(label["score"])
|
48 |
|
49 |
+
print("RAW MODEL OUTPUT:", result)
|
50 |
+
|
51 |
structured_output = {}
|
52 |
prev_label = None
|
53 |
prev_word = None
|
|
|
63 |
if prev_label == entity and prev_word:
|
64 |
structured_output[entity][-1] += word[2:]
|
65 |
else:
|
66 |
+
structured_output.setdefault(entity, []).append(word[2:])
|
67 |
+
else:
|
68 |
+
structured_output.setdefault(entity, []).append(word)
|
69 |
|
70 |
prev_label = entity
|
71 |
prev_word = word
|
|
|
79 |
except Exception as e:
|
80 |
raise HTTPException(status_code=500, detail=f"Error processing request: {e}")
|
81 |
|
82 |
+
# π Streamlit Frontend
|
83 |
+
def main():
|
84 |
+
st.set_page_config(page_title="Luxury Fashion NER", layout="wide")
|
85 |
+
|
86 |
+
st.title("π Luxury Fashion Entity Extractor")
|
87 |
+
st.write("Enter a text query and extract structured entities like **Brand, Category, Gender, and Price.**")
|
88 |
+
|
89 |
+
query = st.text_input("Enter Query:", "Gucci handbags for women under $5000")
|
90 |
+
|
91 |
+
if st.button("Analyze"):
|
92 |
+
response = predict(query)
|
93 |
+
|
94 |
+
col1, col2 = st.columns(2)
|
95 |
+
|
96 |
+
with col1:
|
97 |
+
st.subheader("π Structured Output")
|
98 |
+
for key, value in response["structured_output"].items():
|
99 |
+
st.write(f"**{key}:** {', '.join(value)}")
|
100 |
+
|
101 |
+
with col2:
|
102 |
+
st.subheader("π Raw Model Output")
|
103 |
+
st.json(response["raw_output"])
|
104 |
+
|
105 |
if __name__ == "__main__":
|
106 |
+
main()
|