Spaces:
Sleeping
Sleeping
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer, TrainingArguments, Trainer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load Dataset
|
6 |
+
dataset_path = "train-lf-final.jsonl" # Ensure this file is uploaded
|
7 |
+
dataset = load_dataset("json", data_files=dataset_path)
|
8 |
+
|
9 |
+
# Split dataset into training and validation sets
|
10 |
+
dataset = dataset["train"].train_test_split(test_size=0.1)
|
11 |
+
|
12 |
+
# Define label mapping
|
13 |
+
label_list = ["O", "B-BRAND", "I-BRAND", "B-CATEGORY", "I-CATEGORY", "B-GENDER", "B-PRICE", "I-PRICE"]
|
14 |
+
label_map = {label: i for i, label in enumerate(label_list)}
|
15 |
+
|
16 |
+
# Load Tokenizer
|
17 |
+
model_name = "distilbert/distilbert-base-uncased"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
|
20 |
+
# Tokenization function
|
21 |
+
def tokenize_and_align_labels(example):
|
22 |
+
tokenized_inputs = tokenizer(example["tokens"], is_split_into_words=True, truncation=True, padding="max_length", max_length=128)
|
23 |
+
|
24 |
+
labels = []
|
25 |
+
word_ids = tokenized_inputs.word_ids()
|
26 |
+
prev_word_idx = None
|
27 |
+
for word_idx in word_ids:
|
28 |
+
if word_idx is None:
|
29 |
+
labels.append(-100)
|
30 |
+
elif word_idx != prev_word_idx:
|
31 |
+
labels.append(label_map[example["tags"][word_idx]])
|
32 |
+
else:
|
33 |
+
labels.append(label_map[example["tags"][word_idx]])
|
34 |
+
prev_word_idx = word_idx
|
35 |
+
|
36 |
+
tokenized_inputs["labels"] = labels
|
37 |
+
return tokenized_inputs
|
38 |
+
|
39 |
+
# Apply tokenization
|
40 |
+
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True)
|
41 |
+
|
42 |
+
# Load Model
|
43 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=len(label_list))
|
44 |
+
|
45 |
+
# Training Arguments
|
46 |
+
training_args = TrainingArguments(
|
47 |
+
output_dir="./ner_model",
|
48 |
+
evaluation_strategy="epoch",
|
49 |
+
save_strategy="epoch",
|
50 |
+
per_device_train_batch_size=8,
|
51 |
+
per_device_eval_batch_size=8,
|
52 |
+
num_train_epochs=3,
|
53 |
+
weight_decay=0.01,
|
54 |
+
push_to_hub=True,
|
55 |
+
logging_dir="./logs"
|
56 |
+
)
|
57 |
+
|
58 |
+
# Trainer
|
59 |
+
trainer = Trainer(
|
60 |
+
model=model,
|
61 |
+
args=training_args,
|
62 |
+
train_dataset=tokenized_datasets["train"],
|
63 |
+
eval_dataset=tokenized_datasets["test"],
|
64 |
+
tokenizer=tokenizer
|
65 |
+
)
|
66 |
+
|
67 |
+
# Train the model
|
68 |
+
trainer.train()
|
69 |
+
|
70 |
+
# Push to Hugging Face Hub
|
71 |
+
model.push_to_hub("your-hf-username/distilbert-ner")
|
72 |
+
tokenizer.push_to_hub("your-hf-username/distilbert-ner")
|