Spaces:
Sleeping
Sleeping
lorenzoscottb
commited on
Commit
•
bc51159
1
Parent(s):
26c8ca4
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,27 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
|
|
|
|
|
5 |
path_to_L_model = str(os.environ['path_to_L_model'])
|
6 |
path_to_S_model = str(os.environ['path_to_S_model'])
|
|
|
7 |
read_token = str(os.environ['read_token'])
|
8 |
read_token_ii = str(os.environ['read_token_ii'])
|
9 |
|
10 |
languages = pd.read_csv("model_lang.csv", names=["Lang_acr"])
|
11 |
|
|
|
12 |
def check_lang(lang_acronym):
|
13 |
if lang_acronym in languages["Lang_acr"].to_list():
|
14 |
return "True"
|
15 |
else:
|
16 |
return "False"
|
17 |
|
18 |
-
title = "DSA: version
|
19 |
|
20 |
description_main = """
|
21 |
-
A set of pre-trained LLMs tuned to perform sentiment analysis. You can choose between a
|
22 |
|
23 |
Use the current interface to check if a language is included in the multilingual model, using language acronyms (e.g. it for Italian).
|
24 |
Click on one of the upper buttons to select and start querying one of the two models.
|
@@ -32,6 +36,10 @@ description_S = """
|
|
32 |
A BERT-base-cased model pre-trained and tuned on English data.
|
33 |
"""
|
34 |
|
|
|
|
|
|
|
|
|
35 |
example_main = ["en", "it", "pl"]
|
36 |
|
37 |
examples = [
|
@@ -40,6 +48,12 @@ examples = [
|
|
40 |
["Śledził mnie niebieski potwór, ale się nie bałem. Byłem spokojny i zrelaksowany."],
|
41 |
]
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
interface_words = gr.Interface(
|
44 |
fn=check_lang,
|
45 |
inputs="text",
|
@@ -61,11 +75,19 @@ interface_model_S = gr.Interface.load(
|
|
61 |
name=path_to_S_model,
|
62 |
description=description_S,
|
63 |
examples=examples[0],
|
64 |
-
title="DSA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
api_key=read_token_ii,
|
66 |
)
|
67 |
|
68 |
gr.TabbedInterface(
|
69 |
-
[interface_words, interface_model_L, interface_model_S],
|
70 |
-
["Intro", "Large Multilingual", "Base En"]
|
71 |
).launch()
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
|
5 |
+
path_to_generation_model = str(os.environ['path_to_generation_model'])
|
6 |
+
|
7 |
path_to_L_model = str(os.environ['path_to_L_model'])
|
8 |
path_to_S_model = str(os.environ['path_to_S_model'])
|
9 |
+
|
10 |
read_token = str(os.environ['read_token'])
|
11 |
read_token_ii = str(os.environ['read_token_ii'])
|
12 |
|
13 |
languages = pd.read_csv("model_lang.csv", names=["Lang_acr"])
|
14 |
|
15 |
+
|
16 |
def check_lang(lang_acronym):
|
17 |
if lang_acronym in languages["Lang_acr"].to_list():
|
18 |
return "True"
|
19 |
else:
|
20 |
return "False"
|
21 |
|
22 |
+
title = "DSA: version III"
|
23 |
|
24 |
description_main = """
|
25 |
+
A set of pre-trained LLMs tuned to perform sentiment analysis. You can choose between a Multilingual or English-only.
|
26 |
|
27 |
Use the current interface to check if a language is included in the multilingual model, using language acronyms (e.g. it for Italian).
|
28 |
Click on one of the upper buttons to select and start querying one of the two models.
|
|
|
36 |
A BERT-base-cased model pre-trained and tuned on English data.
|
37 |
"""
|
38 |
|
39 |
+
description_G = """
|
40 |
+
A t5 model tuned to performer text-generation, and predict emotion as well as the character experiencing those emotions.
|
41 |
+
"""
|
42 |
+
|
43 |
example_main = ["en", "it", "pl"]
|
44 |
|
45 |
examples = [
|
|
|
48 |
["Śledził mnie niebieski potwór, ale się nie bałem. Byłem spokojny i zrelaksowany."],
|
49 |
]
|
50 |
|
51 |
+
examples_g = [
|
52 |
+
["I'm in an auditorium. Susie S is concerned at her part in this disability awareness spoof we are preparing. I ask, 'Why not do it? Lots of AB's represent us in a patronizing way. Why shouldn't we represent ourselves in a good, funny way?' I watch the video we all made. It is funny. I try to sit on a folding chair. Some guy in front talks to me. Merle is in the audience somewhere. [BL]"],
|
53 |
+
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
interface_words = gr.Interface(
|
58 |
fn=check_lang,
|
59 |
inputs="text",
|
|
|
75 |
name=path_to_S_model,
|
76 |
description=description_S,
|
77 |
examples=examples[0],
|
78 |
+
title="DSA Base English-Only",
|
79 |
+
api_key=read_token_ii,
|
80 |
+
)
|
81 |
+
|
82 |
+
interface_model_G = gr.Interface.load(
|
83 |
+
name=path_to_generation_model,
|
84 |
+
description=description_G,
|
85 |
+
examples=examples_g,
|
86 |
+
title="DSA Generation",
|
87 |
api_key=read_token_ii,
|
88 |
)
|
89 |
|
90 |
gr.TabbedInterface(
|
91 |
+
[interface_words, interface_model_L, interface_model_S, interface_model_G],
|
92 |
+
["Intro", "Large Multilingual", "Base En", "En Generation"]
|
93 |
).launch()
|