lorenzoscottb commited on
Commit
f02e17d
1 Parent(s): 17baabe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -16
app.py CHANGED
@@ -57,7 +57,7 @@ examples = [
57
  "Śledził mnie niebieski potwór, ale się nie bałem. Byłem spokojny i zrelaksowany.",
58
  ]
59
 
60
- #############################
61
 
62
  interface_words = gr.Interface(
63
  fn=check_lang,
@@ -69,7 +69,31 @@ interface_words = gr.Interface(
69
  cache_examples=True,
70
  )
71
 
72
- #############################
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  pipe_L = pipeline(
75
  "text-classification",
@@ -92,7 +116,7 @@ interface_model_L = gr.Interface(
92
  cache_examples=True,
93
  )
94
 
95
- #############################
96
 
97
  pipe_S = pipeline(
98
  "text-classification",
@@ -115,15 +139,7 @@ interface_model_S = gr.Interface(
115
  cache_examples=True,
116
  )
117
 
118
- #############################
119
-
120
- # interface_model_G = gr.Interface.load(
121
- # "models/DReAMy-lib/t5-base-DreamBank-Generation-Emot-Char",
122
- # examples=examples_g,
123
- # title="SA Generation",
124
- # )
125
-
126
- #############################
127
 
128
  interface_model_RE = gr.Interface(
129
  text_to_graph,
@@ -139,7 +155,7 @@ interface_model_RE = gr.Interface(
139
  cache_examples=True,
140
  )
141
 
142
- #############################
143
 
144
  pipe_N = pipeline(
145
  "text2text-generation",
@@ -151,6 +167,7 @@ def predictN(text):
151
  t = pipe_N(text)
152
  t = t[0]["generated_text"]
153
  return t
 
154
  interface_model_N = gr.Interface(
155
  fn=predictN,
156
  inputs='text',
@@ -161,9 +178,9 @@ interface_model_N = gr.Interface(
161
  cache_examples=True,
162
  )
163
 
164
- #############################
165
 
166
  gr.TabbedInterface(
167
- [interface_words, interface_model_N, interface_model_L, interface_model_S, interface_model_RE],
168
- ["Main", "NER", "SA Multilingual", "SA English", "RE"],
169
  ).launch()
 
57
  "Śledził mnie niebieski potwór, ale się nie bałem. Byłem spokojny i zrelaksowany.",
58
  ]
59
 
60
+ ############ Language Test ##############
61
 
62
  interface_words = gr.Interface(
63
  fn=check_lang,
 
69
  cache_examples=True,
70
  )
71
 
72
+ ############ Anomimise ##############
73
+
74
+ def anon(text):
75
+ anon_dreams_list = dreamy.anonimise(
76
+ [text],
77
+ return_original=False,
78
+ batch_size=1
79
+ )
80
+
81
+ return anon_dreams_list[0]
82
+
83
+ interface_anon = gr.Interface(
84
+ fn=anon,
85
+ inputs="text",
86
+ outputs="text",
87
+ title="Anonymise",
88
+ description=description_main,
89
+ examples=[
90
+ "I was an exchange student in Slovakia, visiting someone who had been an exchange student here. The start of the dream was when I had just arrived at their house. Her family was very happy to see me, as well as excited to hear about my life in America. They asked me if I could make them a traditional American dessert to have with dinner, and I agreed, but I needed to go to the store to get some strawberries. The former exchange student, Zelka, said she would drive me to the store, so she took me out to her car which was a jeep like the ones in old WWII movies. The ride was very bumpy and when we got to town, I was very surprised to see how many American stores, etc., were there. It was terrible how much American culture had taken over their country. Then we were taken into this shop where a Chinese man was giving acupuncture lessons.",
91
+ "I was with my friends Mike and Ray. Lego blocks broke apart. Were perhaps in a junkyard.",
92
+ ],
93
+ cache_examples=True,
94
+ )
95
+
96
+ ############ SA classification #################
97
 
98
  pipe_L = pipeline(
99
  "text-classification",
 
116
  cache_examples=True,
117
  )
118
 
119
+ ############ SA classification small ###############
120
 
121
  pipe_S = pipeline(
122
  "text-classification",
 
139
  cache_examples=True,
140
  )
141
 
142
+ ########## RE ##############
 
 
 
 
 
 
 
 
143
 
144
  interface_model_RE = gr.Interface(
145
  text_to_graph,
 
155
  cache_examples=True,
156
  )
157
 
158
+ ############ NER #################
159
 
160
  pipe_N = pipeline(
161
  "text2text-generation",
 
167
  t = pipe_N(text)
168
  t = t[0]["generated_text"]
169
  return t
170
+
171
  interface_model_N = gr.Interface(
172
  fn=predictN,
173
  inputs='text',
 
178
  cache_examples=True,
179
  )
180
 
181
+ ########### MIx all ################
182
 
183
  gr.TabbedInterface(
184
+ [interface_words, interface_anon, interface_model_N, interface_model_L, interface_model_S, interface_model_RE],
185
+ ["Main", "Anonymise", "NER", "SA Multilingual", "SA English", "RE"],
186
  ).launch()