Spaces:
Running
Running
DSatishchandra
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
|
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
9 |
import os
|
10 |
-
import json
|
11 |
|
12 |
# Load Hugging Face model for anomaly detection
|
13 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
@@ -36,13 +35,18 @@ def preprocess_logs(logs):
|
|
36 |
logs['log_message'] = logs['log_message'].str.lower()
|
37 |
return logs
|
38 |
|
39 |
-
# Detect anomalies in logs
|
40 |
def detect_anomaly(logs):
|
41 |
preprocessed_logs = preprocess_logs(logs)
|
|
|
|
|
|
|
|
|
42 |
results = []
|
43 |
for log in preprocessed_logs['log_message']:
|
44 |
anomaly_result = anomaly_detection(log)
|
45 |
-
|
|
|
46 |
return results
|
47 |
|
48 |
# Predict failures based on device metrics
|
|
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
9 |
import os
|
|
|
10 |
|
11 |
# Load Hugging Face model for anomaly detection
|
12 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
|
|
35 |
logs['log_message'] = logs['log_message'].str.lower()
|
36 |
return logs
|
37 |
|
38 |
+
# Detect anomalies in logs with label mapping
|
39 |
def detect_anomaly(logs):
|
40 |
preprocessed_logs = preprocess_logs(logs)
|
41 |
+
label_map = { # Map Hugging Face output labels to meaningful labels
|
42 |
+
"LABEL_0": "Normal",
|
43 |
+
"LABEL_1": "Anomaly"
|
44 |
+
}
|
45 |
results = []
|
46 |
for log in preprocessed_logs['log_message']:
|
47 |
anomaly_result = anomaly_detection(log)
|
48 |
+
label = anomaly_result[0]['label']
|
49 |
+
results.append(label_map.get(label, label)) # Map the label or return the original label
|
50 |
return results
|
51 |
|
52 |
# Predict failures based on device metrics
|