import gradio as gr import os, gc, copy, torch, re from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title = "rwkv-x060-eng_single_round_qa-3B-20240430-ctx1024" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n') instruction = re.sub(r'\n+', '\n', instruction) return f"User: {instruction}\n\nAssistant:""" def evaluate( ctx, token_count=500, temperature=1.0, top_p=0.3, presencePenalty = 0.3, countPenalty = 0.3, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here ctx = generate_prompt(ctx) all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') del out del state gc.collect() torch.cuda.empty_cache() yield out_str.strip() examples = [ ["How can I craft an engaging story featuring vampires on Mars?", 700, 2, 0.1, 0.3, 0.3], ["Compare the business models of Apple and Google.", 700, 2, 0.1, 0.3, 0.3], ["In JSON format, list the top 5 tourist attractions in Paris.", 700, 2, 0.1, 0.3, 0.3], ["Write an outline for a fantasy novel where dreams can alter reality.", 700, 2, 0.1, 0.3, 0.3], ["Can fish get thirsty?", 700, 2, 0.1, 0.3, 0.3], ["Write a Bash script to check disk usage and send alerts if it's too high.", 700, 2, 0.1, 0.3, 0.3], ["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", 700, 2, 0.1, 0.3, 0.3], ] ########################################################################## with gr.Blocks(title=title) as demo: gr.HTML(f"
\n

{title}

\n
") with gr.Tab("Raw Generation"): gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/temp-latest-training-models) with 1.6B params [state-tuned](https://twitter.com/BlinkDL_AI/status/1784496793075744966) on single-round English Q & A. RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.") with gr.Row(): with gr.Column(): prompt = gr.Textbox(lines=2, label="Prompt", value="How can I craft an engaging story featuring vampires on Mars?") token_count = gr.Slider(10, 700, label="Max Tokens", step=10, value=700) temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=2.0) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.1) presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3) count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3) with gr.Column(): with gr.Row(): submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") output = gr.Textbox(label="Output", lines=50) data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"]) submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output]) clear.click(lambda: None, [], [output]) data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty]) demo.queue(concurrency_count=1, max_size=10) demo.launch(share=False)