import gradio as gr import os, gc, copy, torch, re from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title = "rwkv-x060-eng_single_round_qa-3B-20240430-ctx1024" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "rwkv_vocab_v20230424") def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n') instruction = re.sub(r'\n+', '\n', instruction) return f"User: {instruction}\n\nAssistant:""" def evaluate( ctx, token_count=500, temperature=1.0, top_p=0.3, presencePenalty = 0.3, countPenalty = 0.3, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here ctx = generate_prompt(ctx) all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') del out del state gc.collect() torch.cuda.empty_cache() yield out_str.strip() examples = [ ["How can I craft an engaging story featuring vampires on Mars?", 700, 2, 0.1, 0.3, 0.3], ["Compare the business models of Apple and Google.", 700, 2, 0.1, 0.3, 0.3], ["In JSON format, list the top 5 tourist attractions in Paris.", 700, 2, 0.1, 0.3, 0.3], ["Write an outline for a fantasy novel where dreams can alter reality.", 700, 2, 0.1, 0.3, 0.3], ["Can fish get thirsty?", 700, 2, 0.1, 0.3, 0.3], ["Write a Bash script to check disk usage and send alerts if it's too high.", 700, 2, 0.1, 0.3, 0.3], ["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", 700, 2, 0.1, 0.3, 0.3], ] ########################################################################## with gr.Blocks(title=title) as demo: gr.HTML(f"