Dagfinn1962 commited on
Commit
8346a93
1 Parent(s): 70a731b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +305 -314
app.py CHANGED
@@ -1,336 +1,327 @@
1
- import numpy as np
2
  import gradio as gr
3
- import ast
4
  import requests
5
-
6
- import logging
7
- from rembg import new_session
8
- from cutter import remove, make_label
9
- from utils import *
10
-
11
- API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
12
- API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"
13
-
14
- #from theme_dropdown import create_theme_dropdown # noqa: F401
15
-
16
- from theme_dropdown import create_theme_dropdown # noqa: F401
17
-
18
- dropdown, js = create_theme_dropdown()
19
-
20
- models = [
21
- {"name": "❤ STABLE DIFFUSION MODELS ==========", "url": "stabilityai/stable-diffusion-2-1"},
22
- {"name": "SD ComVis 1.2","url": "CompVis/stable-diffusion-v1-2"},
23
- {"name": "SD Comvis 1.4","url": "CompVis/stable-diffusion-v1-4"},
24
- {"name": "SD runawayml 1.5","url": "runwayml/stable-diffusion-v1-5"},
25
- {"name": "SD stable-diffusion xl base 1.0","url": "timothymhowe/stable-diffusion-xl-base-1.0"},
26
- {"name": "SD NSFW","url": "digiplay/CamelliaMix_NSFW_diffusers_v1.1"},
27
 
28
- {"name": "SD Dreamshaper-Anime","url": "Lykon/DreamShaper"},
29
- {"name": "Dreamlike Anime","url": "dreamlike-art/dreamlike-photoreal-2.0"},
30
- {"name": "❤ REALISTIC PHOTO MODELS ==========", "url": "dreamlike-art/dreamlike-photoreal-2.0"},
31
- {"name": "AmiIReal", "url": "stablediffusionapi/amireal"},
32
- {"name": "Analog Diffusion", "url": "wavymulder/Analog-Diffusion"},
33
- {"name": "Circulus 2.8", "url": "circulus/sd-photoreal-v2.8"},
34
- {"name": "UltraSkin", "url": "VegaKH/Ultraskin"},
35
- {"name": "Wavyfusion", "url": "wavymulder/wavyfusion"},
36
- {"name": "❤ SEMI-REALISTIC MODELS ==========", "url": "stablediffusionapi/all-526"},
37
- {"name": "All 526", "url": "stablediffusionapi/all-526"},
38
- {"name": "All 526 animated", "url": "stablediffusionapi/all-526-animated"},
39
- {"name": "Circulus Semi Real 2", "url": "circulus/sd-photoreal-semi-v2"},
40
- {"name": "Semi Real Mix", "url": "robotjung/SemiRealMix"},
41
- {"name": "SpyBG", "url": "stablediffusionapi/spybg"},
42
- {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
43
- {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
44
- {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
45
- {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
46
- {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
47
- {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
48
- {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
49
- {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
50
- {"name": "❤ 3D ART MODELS ==========", "url": "DucHaiten/DucHaitenAIart"},
51
- {"name": "DucHaiten Art", "url": "DucHaiten/DucHaitenAIart"},
52
- {"name": "DucHaiten ClassicAnime", "url": "DucHaiten/DH_ClassicAnime"},
53
- {"name": "DucHaiten DreamWorld", "url": "DucHaiten/DucHaitenDreamWorld"},
54
- {"name": "DucHaiten Journey", "url": "DucHaiten/DucHaitenJourney"},
55
- {"name": "DucHaiten StyleLikeMe", "url": "DucHaiten/DucHaiten-StyleLikeMe"},
56
- {"name": "DucHaiten SuperCute", "url": "DucHaiten/DucHaitenSuperCute"},
57
- {"name": "Redshift Diffusion 768", "url": "nitrosocke/redshift-diffusion-768"},
58
- {"name": "Redshift Diffusion", "url": "nitrosocke/redshift-diffusion"},
59
- ]
60
-
61
-
62
- #### REM-BG
63
-
64
- remove_bg_models = {
65
- "TracerUniversalB7": "TracerUniversalB7",
66
- "U2NET": "u2net",
67
- "U2NET Human Seg": "u2net_human_seg",
68
- "U2NET Cloth Seg": "u2net_cloth_seg"
69
- }
70
-
71
- model_choices = keys(remove_bg_models)
72
-
73
-
74
- def predict(image, session, smoot, matting, bg_color):
75
-
76
- session = new_session(remove_bg_models[session])
77
-
78
- try:
79
- return remove(session, image, smoot, matting, bg_color)
80
- except ValueError as err:
81
- logging.error(err)
82
- return make_label(str(err)), None
83
-
84
-
85
- def change_show_mask(chk_state):
86
- return gr.Image.update(visible=chk_state)
87
-
88
-
89
- def change_include_matting(chk_state):
90
- return gr.Box.update(visible=chk_state), (0, 0, 0), 0, 0, 0
91
-
92
-
93
- def change_foreground_threshold(fg_value, value):
94
- fg, bg, erode = value
95
- return fg_value, bg, erode
96
-
97
-
98
- def change_background_threshold(bg_value, value):
99
- fg, bg, erode = value
100
- return fg, bg_value, erode
101
-
102
-
103
- def change_erode_size(erode_value, value):
104
- fg, bg, erode = value
105
- return fg, bg, erode_value
106
-
107
-
108
- def set_dominant_color(chk_state):
109
- return chk_state, gr.ColorPicker.update(value=False, visible=not chk_state)
110
-
111
-
112
- def change_picker_color(picker, dominant):
113
- if not dominant:
114
- return picker
115
- return dominant
116
-
117
-
118
- def change_background_mode(chk_state):
119
- return gr.ColorPicker.update(value=False, visible=chk_state), \
120
- gr.Checkbox.update(value=False, visible=chk_state)
121
-
122
-
123
-
124
- ###########
125
-
126
- text_gen = gr.Interface.load("spaces/Avenuenw/prompt-extend")
127
-
128
- current_model = models[0]
129
 
130
- models2 = []
131
- for model in models:
132
- model_url = f"models/{model['url']}"
133
- loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
134
- models2.append(loaded_model)
135
 
136
- def text_it(inputs, text_gen=text_gen):
137
- return text_gen(inputs)
 
138
 
139
- def flip_text(x):
140
- return x[::-1]
141
 
142
- def send_it(inputs, model_choice):
143
- proc = models2[model_choice]
144
- return proc(inputs)
145
 
 
 
 
146
 
147
- def flip_image(x):
148
- return np.fliplr(x)
 
 
 
 
149
 
 
 
150
 
151
- def set_model(current_model_index):
152
- global current_model
153
- current_model = models[current_model_index]
154
- return gr.update(value=f"{current_model['name']}")
155
 
156
- #define inference function
157
- #First: Get initial images for the grid display
158
- def get_initial_images():
159
- response = requests.post(API_URL_INITIAL, json={
160
- "data": []
161
- }).json()
162
- #data = response["data"][0]['data'][0][0][:-1]
163
- response_dict = response['data'][0]
164
- return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]]
165
 
166
- #Second: Process response dictionary to get imges as hyperlinked image tags
167
- def process_response(response_dict):
168
- return [resp[0][:-1] for resp in response_dict["data"]]
169
 
170
- response_dict = get_initial_images()
171
- initial = process_response(response_dict)
172
- initial_imgs = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])
173
 
174
- #Third: Load more images for the grid
175
- def get_next10_images(response_dict, row_count):
176
- row_count = int(row_count)
177
- #print("(1)",type(response_dict))
178
- #Convert the string to a dictionary
179
- if isinstance(response_dict, dict) == False :
180
- response_dict = ast.literal_eval(response_dict)
181
- response = requests.post(API_URL_NEXT10, json={
182
- "data": [response_dict, row_count ] #len(initial)-1
183
- }).json()
184
- row_count+=10
185
- response_dict = response['data'][0]
186
- #print("(2)",type(response))
187
- #print("(3)",type(response['data'][0]))
188
- next_set = [resp[0][:-1] for resp in response_dict["data"]]
189
- next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
190
- return response_dict, row_count, next_set_images #response['data'][0]
191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
 
193
- with gr.Blocks(css ='main.css') as pan:
194
- gr.Markdown("MENU")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
- with gr.Tab("TEXT TO IMAGE"):
197
-
198
- ##model = ("stabilityai/stable-diffusion-2-1")
199
- model_name1 = gr.Dropdown(
200
- label="Choose Model",
201
- choices=[m["name"] for m in models],
202
- type="index",
203
- value=current_model["name"],
204
- interactive=True,
205
- )
206
- input_text = gr.Textbox(label="Prompt idea",)
207
-
208
- ## run = gr.Button("Generate Images")
209
- with gr.Row():
210
- see_prompts = gr.Button("Generate Prompts")
211
- run = gr.Button("Generate Images", variant="primary")
212
-
213
- with gr.Row():
214
- magic1 = gr.Textbox(label="Generated Prompt", lines=2)
215
- output1 = gr.Image(label="")
216
-
217
-
218
- with gr.Row():
219
- magic2 = gr.Textbox(label="Generated Prompt", lines=2)
220
- output2 = gr.Image(label="")
221
-
222
-
223
- run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
224
- run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
225
- see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
226
- see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
227
-
228
- model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
229
-
230
- with gr.Tab("AI Library"):
231
- #Using Gradio Demos as API - This is Hot!
232
- #get_next10_images(response_dict=response_dict, row_count=9)
233
- #position: fixed; top: 0; left: 0; width: 100%; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
234
-
235
- #Defining the Blocks layout
236
- # with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
237
- gr.HTML(value="top of page", elem_id="top",visible=False)
238
- gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
239
- <div
240
- style="
241
- display: inline-flex;
242
- align-items: center;
243
- gap: 0.8rem;
244
- font-size: 1.75rem;
245
- "
246
- >
247
- <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
248
- Using Gradio API - 2 </h1><br></div>
249
- <div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
250
- Stream < href="https://huggingface.co/collections/Dagfinn1962/images-64fc02ca304b8cb412ccda28" target="_blank">Collection Images</a> ina beautiful grid</h4><br>
251
- </div>""")
252
- with gr.Tab("Gallery"):
253
- #with gr.Tab(): #(elem_id = "col-container"):
254
- #gr.Column(): #(elem_id = "col-container"):
255
- b1 = gr.Button("Load More Images").style(full_width=False)
256
- df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
257
- row_count = gr.Number(visible=False, value=19 )
258
- img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search",
259
- value=initial_imgs ) #initial[:-1] )
260
-
261
-
262
- b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" )
263
-
264
- ########################## REM-BG
265
- with gr.Tab("Remove Background"):
266
-
267
- color_state = gr.State(value=False)
268
- matting_state = gr.State(value=(0, 0, 0))
269
- gr.HTML("<center><h1>Remove Background Tool</h1></center>")
270
-
271
- with gr.Row(equal_height=False):
272
- with gr.Column():
273
- input_img = gr.Image(type="pil", label="Input image")
274
- drp_models = gr.Dropdown(choices=model_choices, label="Model Segment", value="TracerUniversalB7")
275
-
276
  with gr.Row():
277
- chk_include_matting = gr.Checkbox(label="Matting", value=False)
278
- chk_smoot_mask = gr.Checkbox(label="Smoot Mask", value=False)
279
- chk_show_mask = gr.Checkbox(label="Show Mask", value=False)
280
- with gr.Box(visible=False) as slider_matting:
281
- slr_fg_threshold = gr.Slider(0, 300, value=270, step=1, label="Alpha matting foreground threshold")
282
- slr_bg_threshold = gr.Slider(0, 50, value=20, step=1, label="Alpha matting background threshold")
283
- slr_erode_size = gr.Slider(0, 20, value=11, step=1, label="Alpha matting erode size")
284
- with gr.Box():
285
- with gr.Row():
286
- chk_change_color = gr.Checkbox(label="Change background color", value=False)
287
- pkr_color = gr.ColorPicker(label="Pick a new color", visible=False)
288
- chk_dominant = gr.Checkbox(label="Use dominant color", value=False, visible=False)
289
-
290
- #######################
291
- ############################
292
- #############################
293
- run_btn = gr.Button(value="Remove background", variant="primary")
294
-
295
- with gr.Column():
296
- output_img = gr.Image(type="pil", label="Image Result")
297
- mask_img = gr.Image(type="pil", label="Image Mask", visible=False)
298
- gr.ClearButton(components=[input_img, output_img, mask_img])
299
-
300
- chk_include_matting.change(change_include_matting, inputs=[chk_include_matting],
301
- outputs=[slider_matting, matting_state,
302
- slr_fg_threshold, slr_bg_threshold, slr_erode_size])
303
-
304
- slr_bg_threshold.change(change_background_threshold, inputs=[slr_bg_threshold, matting_state],
305
- outputs=[matting_state])
306
-
307
- slr_fg_threshold.change(change_foreground_threshold, inputs=[slr_fg_threshold, matting_state],
308
- outputs=[matting_state])
309
-
310
- slr_erode_size.change(change_erode_size, inputs=[slr_erode_size, matting_state],
311
- outputs=[matting_state])
312
-
313
- chk_show_mask.change(change_show_mask, inputs=[chk_show_mask], outputs=[mask_img])
314
-
315
- chk_change_color.change(change_background_mode, inputs=[chk_change_color],
316
- outputs=[pkr_color, chk_dominant])
317
-
318
- pkr_color.change(change_picker_color, inputs=[pkr_color, chk_dominant], outputs=[color_state])
319
-
320
- chk_dominant.change(set_dominant_color, inputs=[chk_dominant], outputs=[color_state, pkr_color])
321
-
322
- run_btn.click(predict, inputs=[input_img, drp_models, chk_smoot_mask, matting_state, color_state],
323
- outputs=[output_img, mask_img])
324
-
325
-
326
-
327
- # text_input = gr.Textbox() ## Diffuser
328
- # image_output = gr.Image()
329
- # image_button = gr.Button("Flip")
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
 
333
- # text_button.click(flip_text, inputs=text_input, outputs=text_output)
334
- # image_button.click(flip_image, inputs=image_input, outputs=image_output)
335
- pan.queue(concurrency_count=200)
336
- pan.launch(inline=True, show_api=True, max_threads=400 )
 
 
1
  import gradio as gr
 
2
  import requests
3
+ import time
4
+ import json
5
+ import base64
6
+ import os
7
+ from io import BytesIO
8
+ import html
9
+ import re
10
+
11
+
12
+
13
+ class Prodia:
14
+ def __init__(self, api_key, base=None):
15
+ self.base = base or "https://api.prodia.com/v1"
16
+ self.headers = {
17
+ "X-Prodia-Key": api_key
18
+ }
 
 
 
 
 
 
19
 
20
+ def generate(self, params):
21
+ response = self._post(f"{self.base}/sd/generate", params)
22
+ return response.json()
23
+
24
+ def transform(self, params):
25
+ response = self._post(f"{self.base}/sd/transform", params)
26
+ return response.json()
27
+
28
+ def controlnet(self, params):
29
+ response = self._post(f"{self.base}/sd/controlnet", params)
30
+ return response.json()
31
+
32
+ def get_job(self, job_id):
33
+ response = self._get(f"{self.base}/job/{job_id}")
34
+ return response.json()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ def wait(self, job):
37
+ job_result = job
 
 
 
38
 
39
+ while job_result['status'] not in ['succeeded', 'failed']:
40
+ time.sleep(0.25)
41
+ job_result = self.get_job(job['job'])
42
 
43
+ return job_result
 
44
 
45
+ def list_models(self):
46
+ response = self._get(f"{self.base}/sd/models")
47
+ return response.json()
48
 
49
+ def list_samplers(self):
50
+ response = self._get(f"{self.base}/sd/samplers")
51
+ return response.json()
52
 
53
+ def _post(self, url, params):
54
+ headers = {
55
+ **self.headers,
56
+ "Content-Type": "application/json"
57
+ }
58
+ response = requests.post(url, headers=headers, data=json.dumps(params))
59
 
60
+ if response.status_code != 200:
61
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
62
 
63
+ return response
 
 
 
64
 
65
+ def _get(self, url):
66
+ response = requests.get(url, headers=self.headers)
 
 
 
 
 
 
 
67
 
68
+ if response.status_code != 200:
69
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
 
70
 
71
+ return response
 
 
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ def image_to_base64(image):
75
+ # Convert the image to bytes
76
+ buffered = BytesIO()
77
+ image.save(buffered, format="PNG") # You can change format to PNG if needed
78
+
79
+ # Encode the bytes to base64
80
+ img_str = base64.b64encode(buffered.getvalue())
81
+
82
+ return img_str.decode('utf-8') # Convert bytes to string
83
+
84
+
85
+ def remove_id_and_ext(text):
86
+ text = re.sub(r'\[.*\]$', '', text)
87
+ extension = text[-12:].strip()
88
+ if extension == "safetensors":
89
+ text = text[:-13]
90
+ elif extension == "ckpt":
91
+ text = text[:-4]
92
+ return text
93
+
94
+
95
+ def get_data(text):
96
+ results = {}
97
+ patterns = {
98
+ 'prompt': r'(.*)',
99
+ 'negative_prompt': r'Negative prompt: (.*)',
100
+ 'steps': r'Steps: (\d+),',
101
+ 'seed': r'Seed: (\d+),',
102
+ 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
103
+ 'model': r'Model:\s*([^\s,]+)',
104
+ 'cfg_scale': r'CFG scale:\s*([\d\.]+)',
105
+ 'size': r'Size:\s*([0-9]+x[0-9]+)'
106
+ }
107
+ for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
108
+ match = re.search(patterns[key], text)
109
+ if match:
110
+ results[key] = match.group(1)
111
+ else:
112
+ results[key] = None
113
+ if results['size'] is not None:
114
+ w, h = results['size'].split("x")
115
+ results['w'] = w
116
+ results['h'] = h
117
+ else:
118
+ results['w'] = None
119
+ results['h'] = None
120
+ return results
121
+
122
+
123
+ def send_to_txt2img(image):
124
+
125
+ result = {tabs: gr.update(selected="t2i")}
126
 
127
+ try:
128
+ text = image.info['parameters']
129
+ data = get_data(text)
130
+ result[prompt] = gr.update(value=data['prompt'])
131
+ result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
132
+ result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
133
+ result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
134
+ result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
135
+ result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
136
+ result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
137
+ result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
138
+ if model in model_names:
139
+ result[model] = gr.update(value=model_names[model])
140
+ else:
141
+ result[model] = gr.update()
142
+ return result
143
+
144
+ except Exception as e:
145
+ print(e)
146
+
147
+ return result
148
+
149
+
150
+ prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
151
+ model_list = prodia_client.list_models()
152
+ model_names = {}
153
+
154
+ for model_name in model_list:
155
+ name_without_ext = remove_id_and_ext(model_name)
156
+ model_names[name_without_ext] = model_name
157
+
158
+
159
+ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
160
+ result = prodia_client.generate({
161
+ "prompt": prompt,
162
+ "negative_prompt": negative_prompt,
163
+ "model": model,
164
+ "steps": steps,
165
+ "sampler": sampler,
166
+ "cfg_scale": cfg_scale,
167
+ "width": width,
168
+ "height": height,
169
+ "seed": seed
170
+ })
171
+
172
+ job = prodia_client.wait(result)
173
+
174
+ return job["imageUrl"]
175
+
176
+
177
+ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
178
+ result = prodia_client.transform({
179
+ "imageData": image_to_base64(input_image),
180
+ "denoising_strength": denoising,
181
+ "prompt": prompt,
182
+ "negative_prompt": negative_prompt,
183
+ "model": model,
184
+ "steps": steps,
185
+ "sampler": sampler,
186
+ "cfg_scale": cfg_scale,
187
+ "width": width,
188
+ "height": height,
189
+ "seed": seed
190
+ })
191
+
192
+ job = prodia_client.wait(result)
193
+
194
+ return job["imageUrl"]
195
+
196
+
197
+ css = """
198
+ #generate {
199
+ height: 100%;
200
+ }
201
+ """
202
+
203
+ with gr.Blocks(css=css) as demo:
204
+ with gr.Row():
205
+ with gr.Column(scale=6):
206
+ model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
207
+
208
+ with gr.Column(scale=1):
209
+ gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
210
+
211
+ with gr.Tabs() as tabs:
212
+ with gr.Tab("txt2img", id='t2i'):
213
+ with gr.Row():
214
+ with gr.Column(scale=6, min_width=600):
215
+ prompt = gr.Textbox("1girl, Emma Watson, queen, pony tail hair,((full body photo)), photo realistic, high quality, 8k, white tanktop, white shorts,", placeholder="Prompt", show_label=False, lines=3)
216
+ negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="double body, double face, double features, incorrect posture, close up, two heads, two faces, plastic, Deformed, blurry, bad anatomy, bad eyes, crossed eyes, disfigured, poorly drawn face,")
217
+ with gr.Column():
218
+ text_button = gr.Button("Generate", variant='primary', elem_id="generate")
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
  with gr.Row():
221
+ with gr.Column(scale=3):
222
+ with gr.Tab("Generation"):
223
+ with gr.Row():
224
+ with gr.Column(scale=1):
225
+ sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
226
+
227
+ with gr.Column(scale=1):
228
+ steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
229
+
230
+ with gr.Row():
231
+ with gr.Column(scale=1):
232
+ width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
233
+ height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
234
+
235
+ with gr.Column(scale=1):
236
+ batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
237
+ batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
238
+
239
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
240
+ seed = gr.Number(label="Seed", value=-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
+ with gr.Column(scale=2):
243
+ image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
244
+
245
+ text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
246
+ seed], outputs=image_output, concurrency_limit=64)
247
+
248
+ with gr.Tab("img2img", id='i2i'):
249
+ with gr.Row():
250
+ with gr.Column(scale=6, min_width=600):
251
+ i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
252
+ i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
253
+ with gr.Column():
254
+ i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
255
+
256
+ with gr.Row():
257
+ with gr.Column(scale=3):
258
+ with gr.Tab("Generation"):
259
+ i2i_image_input = gr.Image(type="pil")
260
+
261
+ with gr.Row():
262
+ with gr.Column(scale=1):
263
+ i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
264
+
265
+ with gr.Column(scale=1):
266
+ i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
267
+
268
+ with gr.Row():
269
+ with gr.Column(scale=1):
270
+ i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
271
+ i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
272
+
273
+ with gr.Column(scale=1):
274
+ i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
275
+ i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
276
+
277
+ i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
278
+ i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
279
+ i2i_seed = gr.Number(label="Seed", value=-1)
280
 
281
+ with gr.Column(scale=2):
282
+ i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
283
+
284
+ i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
285
+ model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
286
+ i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
287
+
288
+ with gr.Tab("PNG Info"):
289
+ def plaintext_to_html(text, classname=None):
290
+ content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
291
+
292
+ return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
293
+
294
+
295
+ def get_exif_data(image):
296
+ items = image.info
297
+
298
+ info = ''
299
+ for key, text in items.items():
300
+ info += f"""
301
+ <div>
302
+ <p><b>{plaintext_to_html(str(key))}</b></p>
303
+ <p>{plaintext_to_html(str(text))}</p>
304
+ </div>
305
+ """.strip()+"\n"
306
+
307
+ if len(info) == 0:
308
+ message = "Nothing found in the image."
309
+ info = f"<div><p>{message}<p></div>"
310
+
311
+ return info
312
+
313
+ with gr.Row():
314
+ with gr.Column():
315
+ image_input = gr.Image(type="pil")
316
+
317
+ with gr.Column():
318
+ exif_output = gr.HTML(label="EXIF Data")
319
+ send_to_txt2img_btn = gr.Button("Send to txt2img")
320
+
321
+ image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
322
+ send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
323
+ steps, seed, model, sampler,
324
+ width, height, cfg_scale],
325
+ concurrency_limit=64)
326
 
327
+ demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)