Spaces:
Sleeping
Sleeping
File size: 11,742 Bytes
8b092c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import streamlit as st
from datetime import time, datetime
import time as t
from time import time as now
import pandas as pd
import pandas_profiling
import numpy as np
from streamlit_pandas_profiling import st_profile_report
from io import StringIO
import requests
from pathlib import Path
from streamlit_elements import elements, dashboard, mui, media
st.set_page_config(page_title="Francesco Daimon Fernicola", page_icon=":milky_way:", layout="wide")
with st.container():
st.subheader("Hello, and welcome to my official webpage! I am Daimon :wink:")
st.title("PhD Candidate in Machine Translation / Translator / Mountain enthusiast")
st.write("I am passionate about finding new ways to effectively use and understand Machine Translation and effectively evaluating its quality.")
st.write("""
[Github](https://github.com/FrancescoFernicola)
[Unibo](https://www.unibo.it/sitoweb/francesco.fernicola2)
[LinkedIn](https://www.linkedin.com/in/francesco-fernicola-69a0771b7/?locale=en_US)
[Twitter](https://twitter.com/FrancescoDaimon)
""")
st.header('st.button')
if st.button('Say hello'):
st.write('Why hello there')
else:
st.write('Goodbye')
st.header('st.slider')
st.subheader('Slider')
age = st.slider('How old are you?', 0, 120, 25)
st.write(f"I'm {age} years old")
st.subheader('Range Slider')
values = st.slider(
'Select a range of values',
0.0, 100.0, (25.0, 75.0)
)
st.write(f"Values: {values}")
st.subheader('Range time slider')
appointment = st.slider(
"Schedule your appointment:",
value=(time(11,30), time(12,45)),
format="hh:mm"
)
st.write(f"You're scheduled for: {appointment}")
st.subheader('Datetime slider')
start_time = st.slider(
"When do you start?",
value=datetime(2023, 1, 1, 9, 30),
format="DD/MM/YY - hh:mm"
)
st.write(f"Start time: {start_time}")
st.header('Line Chart')
chart_data = pd.DataFrame(
np.random.randn(20, 3),
columns=['a', 'b', 'c']
)
st.line_chart(chart_data)
with st.container():
option = st.selectbox(
'What is your favorite color?',
('Blue', 'Red', 'Green', 'More')
)
if not option == 'More':
st.write(f'Your favorite color is {option}')
else:
new_option = st.multiselect(
'What are your favorite colors',
['Green', 'Yellow', 'Red', 'Blue'],
['Yellow', 'Red']
)
st.write(f'Your favorite colors are {", ".join(new_option)}')
st.header('st.checkbox')
st.write('What would you like to order?')
icecream = st.checkbox('Ice cream')
coffee = st.checkbox('Coffee')
cola = st.checkbox('Cola')
if icecream:
st.write("Great! Heres some more :icecream:")
if coffee:
st.write("Okay, here's some coffee :coffee:")
if cola:
st.write("Here you go π₯€")
#st.header('streamlig_pandas_profiling')
#df = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/penguins_cleaned.csv')
#pr = df.profile_report()
#st_profile_report(pr)
st.write("Contents of the '.streamlit/config.toml' file of this app")
st.code("""
[theme]
primaryColor="#F39C12"
backgroundColor="#2E86C1"
secondaryBackgroundColor="#AED6F1"
textColor="#FFFFFF"
font="monospace"
""")
number = st.sidebar.slider('Select a number:', 0, 10, 5)
st.write(f'Selected number from slider widget is: {number}')
st.header("This is taken from the .streamlit/secrets.toml")
st.write(f"Secret message: {st.secrets['message']}")
st.header("Remember to add the file to the .gitignore!")
st.title('st.file_uploader')
st.subheader('Input TSV/CSV')
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
if uploaded_file.name.endswith('.tsv'):
data = pd.read_csv(uploaded_file, sep="\t")
else:
data = pd.read_csv(uploaded_file)
st.subheader("DataFrame")
st.write(data)
st.write(data.describe())
else:
st.info("βοΈ Upload a TSV/CSV file")
with st.expander('About this app'):
st.write('This app shows the various options you can use (and should use) to customize your page')
st.image('https://imgs.xkcd.com/comics/app.png', width=250)
st.write('Below you will also display the progress of the calculation via "st.progress()"')
st.sidebar.header('Input')
user_name = st.sidebar.text_input('What is your name?')
user_emoji = st.sidebar.selectbox('Choose an emoji', ['', 'π', 'π', 'π', 'π', 'π΄', 'π', 'π±'])
user_food = st.sidebar.selectbox('What is your favorite food?', ['', 'Tom Yum Kung', 'Burrito', 'Lasagna', 'Hamburger', 'Pizza'])
st.header('Output')
col1, col2, col3 = st.columns(3)
with col1:
if user_name != '':
st.write(f'π Hello {user_name}!')
else:
st.write('π Please enter your **name**!')
with col2:
if user_emoji != '':
st.write(f'{user_emoji} is your favorite **emoji**!')
else:
st.write('π Please choose an **emoji**!')
with col3:
if user_food != '':
st.write(f'π΄ **{user_food}** is your favorite **food**!')
else:
st.write('π Please choose your favorite **food**!')
#my_bar = st.progress(0)
#for percent_complete in range(100):
# t.sleep(0.05)
# my_bar.progress(percent_complete + 1)
st.metric(label="F1",
value="81.1",
delta="-0.1")
st.title('st.cache')
a0 = now()
st.subheader('Using st.cache')
@st.cache(suppress_st_warning=True)
def load_data_a():
dataframe = pd.DataFrame(
np.random.rand(2000000, 5),
columns=['a', 'b', 'c', 'd', 'e']
)
return dataframe
st.write(load_data_a())
a1 = now()
st.info(a1-a0)
b0 = now()
st.subheader('Not using st.cache')
def load_data_b():
dataframe = pd.DataFrame(
np.random.rand(2000000, 5),
columns=['a', 'b', 'c', 'd', 'e']
)
return dataframe
st.write(load_data_b())
b1 = now()
st.info(b1-b0)
st.title('st.session_state')
def lbs_to_kg():
st.session_state.kg = st.session_state.lbs/2.2046
def kg_to_lbs():
st.session_state.lbs = st.session_state.kg*2.2046
st.header('Input kg/lbs')
col1, spacer, col2 = st.columns([2, 1, 2])
with col1:
punds = st.number_input("Pounds:", key = "lbs", on_change = lbs_to_kg)
with col2:
kilogram = st.number_input("Kilograms:", key = "kg", on_change= kg_to_lbs)
st.header('Output')
st.write("st.session_state object: ", st.session_state)
st.title('π Bored API app')
st.sidebar.header("Input Boredom")
selected_type = st.sidebar.selectbox('Select an activity type', ["education", "recreational", "social", "diy", "charity", "cooking", "relaxation", "music", "busywork"])
suggested_activity_url = f'http://www.boredapi.com/api/activity?type={selected_type}'
json_response = requests.get(suggested_activity_url)
suggested_activity = json_response.json()
c1, c2 = st.columns(2)
with c1:
with st.expander('About this app'):
st.write('Bored stiff? The **BORED API APP** gives suggestions on activities that you can do when bored. This is powered by Bored API.')
with c2:
with st.expander('JSON data'):
st.write(suggested_activity)
st.header('Suggested activity')
st.info(suggested_activity['activity'])
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Number of Participants", value=suggested_activity['participants'], delta='')
with col2:
st.metric(label="Type of Activity", value=suggested_activity['type'].capitalize(), delta='')
with col3:
st.metric(label='Price', value=suggested_activity['price'], delta='')
media_url = st.text_input("Media URL", value="https://www.youtube.com/watch?v=9EcjWd-O4jI&ab_channel=TechnotronicVEVO")
layout = [
# Media item is positioned in coordinates x=0 and y=3, and takes 6/12 columns and has a height of 4.
dashboard.Item("media", 0, 2, 12, 4),
]
with elements("demo"):
# Create a new dashboard with the layout specified above.
#
# draggableHandle is a CSS query selector to define the draggable part of each dashboard item.
# Here, elements with a 'draggable' class name will be draggable.
#
# For more information on available parameters for dashboard grid:
# https://github.com/react-grid-layout/react-grid-layout#grid-layout-props
# https://github.com/react-grid-layout/react-grid-layout#responsive-grid-layout-props
with dashboard.Grid(layout, draggableHandle=".draggable"):
with mui.Card(key="media", sx={"display": "flex", "flexDirection": "column"}):
mui.CardHeader(title="Media Player", className="draggable")
with mui.CardContent(sx={"flex": 1, "minHeight": 0}):
# This element is powered by ReactPlayer, it supports many more players other
# than YouTube. You can check it out there: https://github.com/cookpete/react-player#props
media.Player(url=media_url, width="100%", height="100%", controls=True)
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
local_css("style/style.css")
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
st.subheader("MBART-50 Translator")
source = "In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded as a bad move."
target = ""
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
def get_translation(src_code, trg_code, src):
# translate Hindi to French
tokenizer.src_lang = src_code
encoded = tokenizer(src, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[trg_code]
)
trg = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return trg
valid_languages = ['en_XX', 'fr_XX', 'de_DE', 'it_IT', 'es_XX']
with st.form("my_form"):
left_c, right_c = st.columns(2)
with left_c:
src_lang = st.selectbox(
'Source language',
('en_XX', 'fr_XX', 'de_DE', 'it_IT', 'es_XX'),
)
with right_c:
trg_lang = st.selectbox(
'Target language',
('fr_XX', 'en_XX', 'de_DE', 'it_IT', 'es_XX')
)
source = st.text_area("Source", value=source, height=130, placeholder="Enter the source text...")
submitted = st.form_submit_button("Translate")
if submitted:
if len(source) > 0 and src_lang in valid_languages and trg_lang in valid_languages:
with st.spinner("Translating..."):
try:
target = get_translation(src_lang, trg_lang, source)[0]
st.subheader("Translation done!")
target = st.text_area("Target", value=target, height=130)
except:
st.subheader("Translation failed :sad:")
else:
st.write("Please enter the source text, source language and target language.")
# ---- CONTACT ----
with st.container():
st.write("---")
st.header("Get in Touch With Me!")
st.write("##")
contact_form = """
<form action="https://formsubmit.co/daimon.f@outlook.com" method="POST">
<input type="hidden" name="_captcha" value="false">
<input type="text" name="name" placeholder="Your name" required>
<input type="email" name="email" placeholder="Your email" required>
<textarea name="message" placeholder="Your message here" required></textarea>
<button type="submit">Send</button>
</form>
"""
left_column, right_column = st.columns(2)
with left_column:
st.markdown(contact_form, unsafe_allow_html=True)
with right_column:
st.empty() |