Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from torchvision import transforms | |
from diffusers import DiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") | |
# Define the starter and end prompts | |
starter_prompt = "Create a detailed sketch of a person based on the following description: " | |
end_prompt = " The sketch should have a monochromatic style, resembling a police mugshot, with clear outlines and shading to emphasize facial features. The background should be plain to focus on the subject." | |
# Function to generate the sketch | |
def generate_sketch(main_prompt): | |
prompt = starter_prompt + main_prompt + end_prompt | |
generator = torch.Generator("cpu").manual_seed(17) # Use CPU for generation | |
image = pipe(prompt, num_inference_steps=60, generator=generator).images[0] | |
# Save the generated image (optional) | |
image.save("testing.png") | |
return image | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# InkScribe") | |
main_prompt_input = gr.Textbox(label="Enter Description", placeholder="e.g., A young woman with curly black hair and green eyes, looking directly at the viewer.") | |
generate_button = gr.Button("Generate Sketch") | |
output_image = gr.Image(label="Generated Sketch", width= 512, height= 512) | |
# Set up event handling | |
generate_button.click(generate_sketch, inputs=main_prompt_input, outputs=output_image) | |
# Launch the app | |
demo.launch() |