|
|
|
import streamlit as st |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
@st.cache(hash_funcs= |
|
{transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast: hash}, |
|
suppress_st_warning=True, allow_output_mutation=True) |
|
|
|
def load_data(): |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_data() |
|
|
|
st.write("Welcome to the Chatbot. I am still learning, please be patient") |
|
input = st.text_input('User:') |
|
if 'count' not in st.session_state or st.session_state.count == 6: |
|
st.session_state.count = 0 |
|
st.session_state.chat_history_ids = None |
|
st.session_state.old_response = '' |
|
else: |
|
st.session_state.count += 1 |
|
|
|
|
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
|
|
bot_input_ids = torch.cat([st.session_state.chat_history_ids, new_user_input_ids], dim=-1) if st.session_state.count > 1 else new_user_input_ids |
|
|
|
st.session_state.chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) |
|
|
|
response = tokenizer.decode(st.session_state.chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
if st.session_state.old_response == response: |
|
bot_input_ids = new_user_input_ids |
|
|
|
st.session_state.chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(st.session_state.chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
st.write(f"Chatbot: {response}") |
|
st.session_state.old_response = response |
|
|