DamarJati's picture
Update app.py
0f16de9 verified
raw
history blame
4.12 kB
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
from einops import rearrange
import requests
import spaces
from huggingface_hub import login
hf_token = os.getenv("HF_TOKEN")
# Login to Hugging Face
login(token=hf_token)
from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
# Download and load the ControlNet model
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors?download=true"
model_path = "./controlnet.safetensors"
if not os.path.exists(model_path):
response = requests.get(model_url)
with open(model_path, 'wb') as f:
f.write(response.content)
# https://github.com/XLabs-AI/x-flux.git
name = "flux-dev"
device = torch.device("cuda")
offload = False
is_schnell = name == "flux-schnell"
model, ae, t5, clip, controlnet = None, None, None, None, None
def load_models():
global model, ae, t5, clip, controlnet
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
model = load_flow_model(name, device=device)
ae = load_ae(name, device=device)
controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)
checkpoint = load_safetensors(model_path)
controlnet.load_state_dict(checkpoint, strict=False)
load_models()
def preprocess_canny_image(image, width=1024, height=1024):
image = c_crop(image)
image = image.resize((width, height))
image = canny_processor(image)
return image
@spaces.GPU()
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
if random_seed:
seed = np.random.randint(0, 10000)
if not os.path.isdir("./controlnet_results/"):
os.makedirs("./controlnet_results/")
torch_device = torch.device("cuda")
model.to(torch_device)
t5.to(torch_device)
clip.to(torch_device)
ae.to(torch_device)
controlnet.to(torch_device)
width = 16 * width // 16
height = 16 * height // 16
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
canny_processed = preprocess_canny_image(control_image, width, height)
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
torch.manual_seed(seed)
with torch.no_grad():
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
x = unpack(x.float(), height, width)
x = ae.decode(x)
x1 = x.clamp(-1, 1)
x1 = rearrange(x1[-1], "c h w -> h w c")
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
return output_img
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil", label="Control Image"),
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
gr.Number(value=42, label="Seed"),
gr.Checkbox(label="Random Seed")
],
outputs=gr.Image(type="pil", label="Generated Image"),
title="FLUX.1 Controlnet Cany",
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
)
if __name__ == "__main__":
interface.launch()