File size: 4,451 Bytes
cba094e
 
7923139
cba094e
 
 
 
 
 
 
 
 
 
 
227fd9e
 
 
 
cba094e
 
 
fa285a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba094e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced21ad
cba094e
 
 
 
 
 
 
 
 
 
fa285a7
 
 
cba094e
 
 
 
7fa3baf
cba094e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa285a7
 
 
 
cba094e
fa285a7
b6d0433
cba094e
fa285a7
cba094e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import torch
import spaces
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler
from transformers import AutoProcessor, AutoModelForCausalLM
import cv2
import numpy as np
from PIL import Image, ImageDraw
import subprocess

# Install necessary packages
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True

# Initialize Llama Cleaner model
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Define available models
available_models = [
    'microsoft/Florence-2-base',
    'microsoft/Florence-2-base-ft',
    'microsoft/Florence-2-large',
    'microsoft/Florence-2-large-ft'
]

# Load all models and processors
model_dict = {}
for model_id in available_models:
    florence_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
    florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
    model_dict[model_id] = (florence_model, florence_processor)

@spaces.GPU()
def process_image(image, mask, strategy, sampler, fx=1, fy=1):
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

    if fx != 1 or fy != 1:
        image = cv2.resize(image, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
        mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
    
    config = Config(
        ldm_steps=1,
        ldm_sampler=sampler,
        hd_strategy=strategy,
        hd_strategy_crop_margin=32,
        hd_strategy_crop_trigger_size=200,
        hd_strategy_resize_limit=200,
    )

    model = ModelManager(name="lama", device=device)
    result = model(image, mask, config)
    return result

def create_mask(image, prediction):
    mask = Image.new("RGBA", image.size, (0, 0, 0, 255))  # Black background
    draw = ImageDraw.Draw(mask)
    scale = 1
    for polygons in prediction['polygons']:
        for _polygon in polygons:
            _polygon = np.array(_polygon).reshape(-1, 2)
            if len(_polygon) < 3:
                continue
            _polygon = (_polygon * scale).reshape(-1).tolist()
            draw.polygon(_polygon, fill=(255, 255, 255, 255))  # Make selected area white
    return mask

@spaces.GPU()
def process_images_florence_lama(image, model_choice):
    florence_model, florence_processor = model_dict[model_choice]
    
    # Convert image to OpenCV format
    image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    
    # Run Florence to get mask
    text_input = 'watermark'
    task_prompt = '<REGION_TO_SEGMENTATION>'
    image_pil = Image.fromarray(image_cv)  # Convert array to PIL Image
    inputs = florence_processor(text=task_prompt + text_input, images=image_pil, return_tensors="pt").to("cuda")
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task=task_prompt,
        image_size=(image_pil.width, image_pil.height)
    )
    
    # Create mask and process image with Llama Cleaner
    mask_image = create_mask(image_pil, parsed_answer['<REGION_TO_SEGMENTATION>'])
    result_image = process_image(image_cv, np.array(mask_image), HDStrategy.RESIZE, LDMSampler.ddim)
    
    # Convert result back to PIL Image
    result_image_pil = Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB))
    
    return result_image_pil

# Define Gradio interface
demo = gr.Interface(
    fn=process_images_florence_lama,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Dropdown(choices=available_models, value='microsoft/Florence-2-large', label="Choose Florence Model")
    ],
    outputs=gr.Image(type="pil", label="Output Image"),
    title="Watermark Remover",
    description="Upload images and remove selected watermarks using Florence and Lama Cleaner.\nhttps://github.com/Damarcreative/rem-wm.git"
)

if __name__ == "__main__":
    demo.launch()