Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,581 Bytes
cba094e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import abc
from typing import Optional
import cv2
import torch
from loguru import logger
from lama_cleaner.helper import boxes_from_mask, resize_max_size, pad_img_to_modulo
from lama_cleaner.schema import Config, HDStrategy
class InpaintModel:
min_size: Optional[int] = None
pad_mod = 8
pad_to_square = False
def __init__(self, device, **kwargs):
"""
Args:
device:
"""
self.device = device
self.init_model(device, **kwargs)
@abc.abstractmethod
def init_model(self, device, **kwargs):
...
@staticmethod
@abc.abstractmethod
def is_downloaded() -> bool:
...
@abc.abstractmethod
def forward(self, image, mask, config: Config):
"""Input images and output images have same size
images: [H, W, C] RGB
masks: [H, W, 1] 255 ไธบ masks ๅบๅ
return: BGR IMAGE
"""
...
def _pad_forward(self, image, mask, config: Config):
origin_height, origin_width = image.shape[:2]
pad_image = pad_img_to_modulo(
image, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
)
pad_mask = pad_img_to_modulo(
mask, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
)
logger.info(f"final forward pad size: {pad_image.shape}")
result = self.forward(pad_image, pad_mask, config)
result = result[0:origin_height, 0:origin_width, :]
original_pixel_indices = mask < 127
result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
return result
@torch.no_grad()
def __call__(self, image, mask, config: Config):
"""
images: [H, W, C] RGB, not normalized
masks: [H, W]
return: BGR IMAGE
"""
inpaint_result = None
logger.info(f"hd_strategy: {config.hd_strategy}")
if config.hd_strategy == HDStrategy.CROP:
if max(image.shape) > config.hd_strategy_crop_trigger_size:
logger.info(f"Run crop strategy")
boxes = boxes_from_mask(mask)
crop_result = []
for box in boxes:
crop_image, crop_box = self._run_box(image, mask, box, config)
crop_result.append((crop_image, crop_box))
inpaint_result = image[:, :, ::-1]
for crop_image, crop_box in crop_result:
x1, y1, x2, y2 = crop_box
inpaint_result[y1:y2, x1:x2, :] = crop_image
elif config.hd_strategy == HDStrategy.RESIZE:
if max(image.shape) > config.hd_strategy_resize_limit:
origin_size = image.shape[:2]
downsize_image = resize_max_size(
image, size_limit=config.hd_strategy_resize_limit
)
downsize_mask = resize_max_size(
mask, size_limit=config.hd_strategy_resize_limit
)
logger.info(
f"Run resize strategy, origin size: {image.shape} forward size: {downsize_image.shape}"
)
inpaint_result = self._pad_forward(
downsize_image, downsize_mask, config
)
# only paste masked area result
inpaint_result = cv2.resize(
inpaint_result,
(origin_size[1], origin_size[0]),
interpolation=cv2.INTER_CUBIC,
)
original_pixel_indices = mask < 127
inpaint_result[original_pixel_indices] = image[:, :, ::-1][
original_pixel_indices
]
if inpaint_result is None:
inpaint_result = self._pad_forward(image, mask, config)
return inpaint_result
def _crop_box(self, image, mask, box, config: Config):
"""
Args:
image: [H, W, C] RGB
mask: [H, W, 1]
box: [left,top,right,bottom]
Returns:
BGR IMAGE, (l, r, r, b)
"""
box_h = box[3] - box[1]
box_w = box[2] - box[0]
cx = (box[0] + box[2]) // 2
cy = (box[1] + box[3]) // 2
img_h, img_w = image.shape[:2]
w = box_w + config.hd_strategy_crop_margin * 2
h = box_h + config.hd_strategy_crop_margin * 2
_l = cx - w // 2
_r = cx + w // 2
_t = cy - h // 2
_b = cy + h // 2
l = max(_l, 0)
r = min(_r, img_w)
t = max(_t, 0)
b = min(_b, img_h)
# try to get more context when crop around image edge
if _l < 0:
r += abs(_l)
if _r > img_w:
l -= _r - img_w
if _t < 0:
b += abs(_t)
if _b > img_h:
t -= _b - img_h
l = max(l, 0)
r = min(r, img_w)
t = max(t, 0)
b = min(b, img_h)
crop_img = image[t:b, l:r, :]
crop_mask = mask[t:b, l:r]
logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")
return crop_img, crop_mask, [l, t, r, b]
def _run_box(self, image, mask, box, config: Config):
"""
Args:
image: [H, W, C] RGB
mask: [H, W, 1]
box: [left,top,right,bottom]
Returns:
BGR IMAGE
"""
crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)
return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]
|