Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from lama_cleaner.model_manager import ModelManager | |
from lama_cleaner.schema import Config, HDStrategy, LDMSampler | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import spaces | |
import subprocess | |
# Install necessary packages | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Initialize Florence model | |
model_id = 'microsoft/Florence-2-large' | |
florence_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval() | |
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
# Initialize Llama Cleaner model | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def process_image(image, mask, strategy, sampler, fx=1, fy=1): | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) | |
if fx != 1 or fy != 1: | |
image = cv2.resize(image, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA) | |
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST) | |
config = Config( | |
ldm_steps=1, | |
ldm_sampler=sampler, | |
hd_strategy=strategy, | |
hd_strategy_crop_margin=32, | |
hd_strategy_crop_trigger_size=200, | |
hd_strategy_resize_limit=200, | |
) | |
model = ModelManager(name="lama", device=device) | |
result = model(image, mask, config) | |
return result | |
def create_mask(image, prediction): | |
mask = Image.new("RGBA", image.size, (0, 0, 0, 255)) # Black background | |
draw = ImageDraw.Draw(mask) | |
scale = 1 | |
for polygons in prediction['polygons']: | |
for _polygon in polygons: | |
_polygon = np.array(_polygon).reshape(-1, 2) | |
if len(_polygon) < 3: | |
continue | |
_polygon = (_polygon * scale).reshape(-1).tolist() | |
draw.polygon(_polygon, fill=(255, 255, 255, 255)) # Make selected area white | |
return mask | |
def process_images_florence_lama(image): | |
# Convert image to OpenCV format | |
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
# Run Florence to get mask | |
text_input = 'watermark' # Teks untuk Florence agar mengenali watermark | |
task_prompt = '<REGION_TO_SEGMENTATION>' | |
image_pil = Image.fromarray(image_cv) # Convert array to PIL Image | |
inputs = florence_processor(text=task_prompt + text_input, images=image_pil, return_tensors="pt").to("cuda") | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task=task_prompt, | |
image_size=(image_pil.width, image_pil.height) | |
) | |
# Create mask and process image with Llama Cleaner | |
mask_image = create_mask(image_pil, parsed_answer['<REGION_TO_SEGMENTATION>']) | |
result_image = process_image(image_cv, np.array(mask_image), HDStrategy.RESIZE, LDMSampler.ddim) | |
# Convert result back to PIL Image | |
result_image_pil = Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)) | |
return result_image_pil | |
# Define Gradio interface | |
demo = gr.Interface( | |
fn=process_images_florence_lama, | |
inputs=gr.Image(type="pil", label="Input Image"), | |
outputs=gr.Image(type="pil", label="Output Image"), | |
title="Watermark Remover.", | |
description="Upload images and remove selected watermarks using Florence and Lama Cleaner." | |
) | |
# Launch Gradio interface with example images | |
if __name__ == "__main__": | |
demo.launch() |