Musica / app.py
DanLeBossDeESGI's picture
Update app.py
97cac2d
import streamlit as st
import os
import tempfile
from moviepy.editor import ImageSequenceClip, concatenate_videoclips
from PIL import Image
import torch
from diffusers import AudioLDMPipeline
from transformers import AutoProcessor, ClapModel, BlipProcessor, BlipForConditionalGeneration
# make Space compatible with CPU duplicates
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
# load the diffusers pipeline
repo_id = "cvssp/audioldm-m-full"
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
pipe.unet = torch.compile(pipe.unet)
# CLAP model (only required for automatic scoring)
clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device)
processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full")
generator = torch.Generator(device)
# Charger le modèle et le processeur Blip pour la description d'images
image_caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image_caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Streamlit app setup
st.set_page_config(
page_title="Text to Media",
page_icon="📷 🎵",
)
st.title("Générateur de Diaporama Vidéo et Musique")
# Sélectionnez les images
uploaded_files = st.file_uploader("Sélectionnez des images (PNG, JPG, JPEG)", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
if uploaded_files:
# Créez un répertoire temporaire pour stocker les images
temp_dir = tempfile.mkdtemp()
# Enregistrez les images téléchargées dans le répertoire temporaire
image_paths = []
descriptions = [] # Pour stocker les descriptions générées
for i, uploaded_file in enumerate(uploaded_files):
image_path = os.path.join(temp_dir, uploaded_file.name)
with open(image_path, 'wb') as f:
f.write(uploaded_file.read())
image_paths.append(image_path)
# Générez la légende pour chaque image
try:
image = Image.open(image_path).convert("RGB")
inputs = image_caption_processor(image, return_tensors="pt")
out = image_caption_model.generate(**inputs)
caption = image_caption_processor.decode(out[0], skip_special_tokens=True)
descriptions.append(caption)
except Exception as e:
descriptions.append("Erreur lors de la génération de la légende")
# Affichez les images avec leurs descriptions
for i, image_path in enumerate(image_paths):
st.image(image_path, caption=f"Description : {descriptions[i]}", use_column_width=True)
# Créez une vidéo à partir des images
st.header("Création d'une Diapositive Vidéo")
# Sélectionnez la durée d'affichage de chaque image avec une barre horizontale (en secondes)
image_duration = st.slider("Sélectionnez la durée d'affichage de chaque image (en secondes)", 1, 10, 4)
# Débit d'images par seconde (calculé en fonction de la durée de chaque image)
frame_rate = 1 / image_duration
image_clips = [ImageSequenceClip([image_path], fps=frame_rate, durations=[image_duration]) for image_path in image_paths]
final_clip = concatenate_videoclips(image_clips, method="compose")
final_clip_path = os.path.join(temp_dir, "slideshow.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', fps=frame_rate)
# Afficher la vidéo
st.video(open(final_clip_path, 'rb').read())
# Générez de la musique à partir des descriptions
st.header("Génération de Musique à partir des Descriptions")
# Utilisez les descriptions générées pour la musique
music_input = "\n".join(descriptions)
st.text_area("Descriptions pour la musique", music_input, height=200)
# Configuration de la musique
seed = st.number_input("Seed", value=45)
duration = st.slider("Duration (seconds)", 2.5, 10.0, 5.0, 2.5)
guidance_scale = st.slider("Guidance scale", 0.0, 4.0, 2.5, 0.5)
n_candidates = st.slider("Number waveforms to generate", 1, 3, 3, 1)
def score_waveforms(text, waveforms):
inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score
probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities
most_probable = torch.argmax(probs) # and now select the most likely audio waveform
waveform = waveforms[most_probable]
return waveform
if st.button("Générer de la musique"):
waveforms = pipe(
music_input,
audio_length_in_s=duration,
guidance_scale=guidance_scale,
num_inference_steps=100,
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
generator=generator.manual_seed(int(seed)),
)["audios"]
if waveforms.shape[0] > 1:
waveform = score_waveforms(music_input, waveforms)
else:
waveform = waveforms[0]
# Afficher le lecteur audio
st.audio(waveform, format="audio/wav", sample_rate=16000)