DanielSc4's picture
Update w/ LDA
5affbbc
raw
history blame
7.38 kB
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import nltk, spacy, gensim
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
from pprint import pprint
def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
format_s = "{s}\n{c}"
return [
format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment)
]
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): #'NOUN', 'ADJ', 'VERB', 'ADV'
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(" ".join([
token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags
]))
return texts_out
def main(button, choose_context):
df = pd.read_csv('./data/results.csv', index_col=0)
if choose_context == 'comment':
data = df.comment
elif choose_context == 'sup comment':
data = df.sup_comment
elif choose_context == 'sup comment + comment':
data = concat_comments(df.sup_comment, df.comment)
data_words = list(sent_to_words(data))
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"]) #select noun and verb
vectorizer = CountVectorizer(
analyzer='word',
min_df=10,
stop_words='english',
lowercase=True,
token_pattern='[a-zA-Z0-9]{3,}'
)
data_vectorized = vectorizer.fit_transform(data_lemmatized)
lda_model = LatentDirichletAllocation(
n_components=5,
max_iter=10,
learning_method='online',
random_state=100,
batch_size=128,
evaluate_every = -1,
n_jobs = -1,
)
lda_output = lda_model.fit_transform(data_vectorized)
print(lda_model) # Model attributes
# Log Likelyhood: Higher the better
print("Log Likelihood: ", lda_model.score(data_vectorized))
# Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
print("Perplexity: ", lda_model.perplexity(data_vectorized))
# See model parameters
pprint(lda_model.get_params())
best_lda_model = lda_model
lda_output = best_lda_model.transform(data_vectorized)
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
docnames = ["Doc" + str(i) for i in range(len(data))]
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
dominant_topic = np.argmax(df_document_topic.values, axis=1)
df_document_topic["dominant_topic"] = dominant_topic
# Topic-Keyword Matrix
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
df_topic_keywords
# Assign Column and Index
df_topic_keywords.columns = vectorizer.get_feature_names_out()
df_topic_keywords.index = topicnames
# View
df_topic_keywords
# Show top n keywords for each topic
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
keywords = np.array(vectorizer.get_feature_names_out())
topic_keywords = []
for topic_weights in lda_model.components_:
top_keyword_locs = (-topic_weights).argsort()[:n_words]
topic_keywords.append(keywords.take(top_keyword_locs))
return topic_keywords
topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15)
# Topic - Keywords Dataframe
df_topic_keywords = pd.DataFrame(topic_keywords)
df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])]
df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])]
df_topic_keywords
topics = [
f'Topic {i}' for i in range(len(df_topic_keywords))
]
df_topic_keywords["Topics"] = topics
df_topic_keywords
# # Define function to predict topic for a given text document.
# nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
# def predict_topic(text, nlp=nlp):
# global sent_to_words
# global lemmatization
# # Step 1: Clean with simple_preprocess
# mytext_2 = list(sent_to_words(text))
# # Step 2: Lemmatize
# mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
# # Step 3: Vectorize transform
# mytext_4 = vectorizer.transform(mytext_3)
# # Step 4: LDA Transform
# topic_probability_scores = best_lda_model.transform(mytext_4)
# topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
# # Step 5: Infer Topic
# infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
# #topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
# return infer_topic, topic, topic_probability_scores
# # Predict the topic
# mytext = ["This is a test of a random topic where I talk about politics"]
# infer_topic, topic, prob_scores = predict_topic(text = mytext)
def apply_predict_topic(text):
text = [text]
infer_topic, topic, prob_scores = predict_topic(text = text)
return(infer_topic)
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
# plot
subreddits = df.subreddit.value_counts().index[:22]
weight_counts = {
t: [
df[df.Topic_key_word == t].subreddit.value_counts()[subreddit] / df.subreddit.value_counts()[subreddit] for subreddit in subreddits
] for t in topics
}
irony_percs = {
t: [
len(
df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit].label == 1)]
) /
len(
df[df.subreddit == subreddit]
) for subreddit in subreddits
] for t in topics
}
width = 0.9
fig, ax = plt.subplots(figsize = (10, 7))
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
bottom = np.zeros(len(subreddits))
for k, v in weight_counts.items():
p = ax.bar(subreddits, v, width, label=k, bottom=bottom)
ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\')
bottom += v
ax.set_title("Perc of topics for each subreddit")
ax.legend(loc="upper right")
plt.xticks(rotation=70)
return fig
with gr.Blocks() as demo:
button = gr.Radio(
label="Plot type",
choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot'
)
choose_context = gr.Radio(
label="Context LDA",
choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
)
plot = gr.Plot(label="Plot")
button.change(main, inputs=[button, choose_context], outputs=[plot])
demo.load(main, inputs=[button], outputs=[plot])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()