DanielSc4's picture
Update on data used
65fa4f5
import gradio as gr
import os
import pandas as pd
import matplotlib.pyplot as plt
import gensim.downloader as api
import numpy as np
import nltk, spacy, gensim
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
from pprint import pprint
import matplotlib
matplotlib.use('agg')
print("[x] Downloading word 2 vec")
model_w2v = api.load("word2vec-google-news-300")
def average_word2vec(word_list: list[str]):
# model_w2v = api.load("word2vec-google-news-300")
word_vectors = []
for word in word_list:
if word in model_w2v:
word_vectors.append(model_w2v[word])
if word_vectors:
average_vector = np.mean(word_vectors, axis=0)
else:
return None
most_similar_word = model_w2v.similar_by_vector(average_vector, topn=1)
word, similarity = most_similar_word[0]
return word, similarity
def concat_comments(*kwargs):
return ['\n'.join(ele) for ele in zip(*kwargs)]
def sent_to_words(sentences):
for sentence in sentences:
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=None): #'NOUN', 'ADJ', 'VERB', 'ADV'
texts_out = []
for sent in texts:
doc = nlp(" ".join(sent))
texts_out.append(" ".join([
token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags
]))
return texts_out
def get_lda(n_components, n_top_subreddit_to_analyse, what_label_to_use):
df = pd.read_csv('./data/results.csv', index_col=0)
data = concat_comments(df.subreddit, df.sup_comment, df.comment)
data_words = list(sent_to_words(data))
if what_label_to_use == 'Use True label':
label = 'label'
else:
label = 'prediction'
if not spacy.util.is_package("en_core_web_sm"):
print('[x] en_core_web_sm not found, downloading...')
os.system("python -m spacy download en_core_web_sm")
print('[x] en_core_web_sm downloaded')
print('[x] Lemmatization begins')
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"], nlp=nlp) #select noun and verb
print('[x] Vectorizing')
vectorizer = CountVectorizer(
analyzer='word',
min_df=10,
stop_words='english',
lowercase=True,
token_pattern='[a-zA-Z0-9]{3,}'
)
print('[x] Fitting vectorized data on lemmatization')
data_vectorized = vectorizer.fit_transform(data_lemmatized)
print('[x] Init LDA model')
lda_model = LatentDirichletAllocation(
n_components=n_components,
max_iter=10,
learning_method='online',
random_state=100,
batch_size=128,
evaluate_every = -1,
n_jobs = -1,
verbose=1,
)
print('[x] Fitting LDA model')
lda_output = lda_model.fit_transform(data_vectorized)
print(lda_model) # Model attributes
print('[x] Getting performances')
performances = lda_model.score(data_vectorized), lda_model.perplexity(data_vectorized)
# Log Likelyhood: Higher the better
print("Log Likelihood: ", performances[0])
# Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
print("Perplexity: ", performances[1])
print('[x] Check parameters if they look correct')
# See model parameters
pprint(lda_model.get_params())
# switching to the best model
best_lda_model = lda_model
print('[x] Getting LDA output')
lda_output = best_lda_model.transform(data_vectorized)
print('[x] Assigning topics')
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
docnames = ["Doc" + str(i) for i in range(len(data))]
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
print('[x] Checking dominant topics')
dominant_topic = np.argmax(df_document_topic.values, axis=1)
df_document_topic["dominant_topic"] = dominant_topic
# Topic-Keyword Matrix
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
df_topic_keywords
# Assign Column and Index
df_topic_keywords.columns = vectorizer.get_feature_names_out()
df_topic_keywords.index = topicnames
print('[x] Computing word-topic association')
# Show top n keywords for each topic
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
keywords = np.array(vectorizer.get_feature_names_out())
topic_keywords = []
for topic_weights in lda_model.components_:
top_keyword_locs = (-topic_weights).argsort()[:n_words]
topic_keywords.append(keywords.take(top_keyword_locs))
return topic_keywords
topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15)
# Topic - Keywords Dataframe
df_topic_keywords = pd.DataFrame(topic_keywords)
df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])]
df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])]
df_topic_keywords
# topics = [
# f'Topic {i}' for i in range(len(df_topic_keywords))
# ]
topics = []
for i, row in df_topic_keywords.iterrows():
topics.append(
average_word2vec(row.to_list()[:5])[0]
)
df_topic_keywords["Topics"] = topics
df_topic_keywords
print('[x] Predicting dominant topic for each document')
# Define function to predict topic for a given text document.
def predict_topic(text, nlp=nlp):
global sent_to_words
global lemmatization
# Step 1: Clean with simple_preprocess
mytext_2 = list(sent_to_words(text))
# Step 2: Lemmatize
mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'], nlp=nlp)
# Step 3: Vectorize transform
mytext_4 = vectorizer.transform(mytext_3)
# Step 4: LDA Transform
topic_probability_scores = best_lda_model.transform(mytext_4)
topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
# Step 5: Infer Topic
infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
#topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
return infer_topic, topic, topic_probability_scores
# # Predict the topic
# mytext = ["This is a test of a random topic where I talk about politics"]
# infer_topic, topic, prob_scores = predict_topic(text = mytext, nlp=nlp)
def apply_predict_topic(text):
text = [text]
infer_topic, topic, prob_scores = predict_topic(text = text, nlp=nlp)
return(infer_topic)
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
print('[x] Generating plot [1]')
print('Percentuale di commenti ironici per ogni topic')
perc_topic_irony = {}
for t in topics:
total_0label = sum((df[label] == 1) & (df.Topic_key_word == t))
if total_0label != 0:
total_X_topic = df.Topic_key_word.value_counts()[t]
else:
total_0label, total_X_topic = 0, 0.001 # Non ci cono topic nel dataset
perc_topic_irony[t] = total_0label / total_X_topic
print(f'{t} w/ label 1: {total_0label}/{total_X_topic} ({total_0label / total_X_topic * 100 :.2f}%)')
fig1, ax = plt.subplots(figsize = (10, 7))
bottom = np.zeros(len(perc_topic_irony))
width = 0.9
ax.bar(perc_topic_irony.keys(), perc_topic_irony.values(), width, label = 'sarcastic')
comp = list(map(lambda x: 1 - x if x > 0 else 0, perc_topic_irony.values()))
ax.bar(perc_topic_irony.keys(), comp, width, bottom=list(perc_topic_irony.values()), label = 'not sarcastic')
ax.set_title("% of sarcastic comments for each topic")
plt.xticks(rotation=70)
ax.set_ylim(bottom = 0, top = 1.02)
plt.legend()
plt.axhline(0.5, color = 'red', ls=":")
# probably not necessary (?) To drop eventually if log are to much cluttered!
print('Percentage of each topic for each subreddit')
weight_counts = {}
for t in topics:
weight_counts[t] = []
for subreddit in df['subreddit'].value_counts().index[:n_top_subreddit_to_analyse]: # first 10 big subreddits
if sum(df[df.Topic_key_word == t].subreddit == subreddit) > 0: # se ci sono subreddit per il topic t (almeno una riga nel df)
perc_sub = df[df.Topic_key_word == t]['subreddit'].value_counts()[subreddit] / df['subreddit'].value_counts()[subreddit]
else:
perc_sub = 0
weight_counts[t].append(perc_sub)
print(f'Perc of topic {t} in subreddit {subreddit}: {perc_sub * 100:.2f}')
print()
print('[x] Generating plot [2]')
# plot
subreddits = list(df.subreddit.value_counts().index)[:n_top_subreddit_to_analyse]
irony_percs = {
t: [
len(
df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit][label] == 1)]
) /
len(
df[df.subreddit == subreddit]
) for subreddit in subreddits
] for t in topics
}
width = 0.9
fig2, ax = plt.subplots(figsize = (10, 7))
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
bottom = np.zeros(len(subreddits))
for k, v in weight_counts.items():
p = ax.bar(subreddits, v, width, label=k, bottom=bottom)
ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\')
bottom += v
ax.set_title("% of topics for each subreddit")
ax.legend(loc="upper right")
plt.xticks(rotation=50)
ax.set_ylim(bottom = 0, top = 1.02)
print('[v] All looking good!')
return df_topic_keywords, fig1, fig2
# def main():
with gr.Blocks() as demo:
gr.Markdown("# Dashboard per l'analisi con LDA")
gr.Markdown("### La dashboard permette l'addestramento di un modello LDA per controllare se e quali (dominant) topic sono pi霉 propensi a commenti di tipo sarcastico")
# gradio.Dataframe(路路路)
inputs = []
with gr.Row():
inputs.append(gr.Slider(2, 25, value=5, step = 1, label="LDA N components", info="Scegli il numero di componenti per LDA"))
inputs.append(gr.Slider(2, 20, value=5, step = 1, label="Subreddit dal dataset", info="Numero di subreddit da analizzare"))
inputs.append(gr.Radio(
choices = ['Use True label', 'Use BERT prediction'],
value = 'Use True label',
label = "Scegliere quali label sull'ironia utilizzare:",
)
)
btn = gr.Button(value="Submit")
gr.Markdown("## Risulati ottenuti")
gr.Markdown("#### Top 15 parole che pi霉 contribuiscono al topic di riferimento (utlima colonna):")
btn.click(
get_lda,
inputs=inputs,
outputs=[
gr.DataFrame(),
gr.Plot(label="Quanto i topic trovati portano ironia?"),
gr.Plot(label="Come i topic sono correlati ai diversi subreddit del dataset?"),
]
)
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()