Spaces:
Runtime error
Runtime error
test
Browse files- app.py +64 -6
- requirements.txt +4 -0
app.py
CHANGED
@@ -2,18 +2,76 @@ import gradio as gr
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
|
12 |
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
7 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
|
9 |
+
def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
|
10 |
+
format_s = "{s}\n{c}"
|
11 |
+
return [
|
12 |
+
format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment)
|
13 |
+
]
|
14 |
|
15 |
|
16 |
|
17 |
+
def main(button, chose_context):
|
18 |
+
df = pd.read_csv('./data/results.csv', index_col=0)
|
19 |
+
print(chose_context)
|
20 |
|
21 |
+
data = concat_comments(df.sup_comment, df.comment)
|
22 |
|
23 |
|
24 |
+
subreddits = df.subreddit.value_counts().index[:22]
|
25 |
|
26 |
+
weight_counts = {
|
27 |
+
t: [
|
28 |
+
df[df.Topic_key_word == t].subreddit.value_counts()[subreddit] / df.subreddit.value_counts()[subreddit] for subreddit in subreddits
|
29 |
+
] for t in topics
|
30 |
+
}
|
31 |
|
32 |
+
irony_percs = {
|
33 |
+
t: [
|
34 |
+
len(
|
35 |
+
df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit].label == 1)]
|
36 |
+
) /
|
37 |
+
len(
|
38 |
+
df[df.subreddit == subreddit]
|
39 |
+
) for subreddit in subreddits
|
40 |
+
] for t in topics
|
41 |
+
}
|
42 |
+
width = 0.9
|
43 |
+
|
44 |
+
fig, ax = plt.subplots(figsize = (10, 7))
|
45 |
+
plt.axhline(0.5, color = 'red', ls=":", alpha = .3)
|
46 |
+
|
47 |
+
bottom = np.zeros(len(subreddits))
|
48 |
+
|
49 |
+
for k, v in weight_counts.items():
|
50 |
+
p = ax.bar(subreddits, v, width, label=k, bottom=bottom)
|
51 |
+
ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\')
|
52 |
+
bottom += v
|
53 |
+
|
54 |
+
ax.set_title("Perc of topics for each subreddit")
|
55 |
+
ax.legend(loc="upper right")
|
56 |
+
plt.xticks(rotation=70)
|
57 |
+
|
58 |
+
plt.show()
|
59 |
+
|
60 |
+
|
61 |
+
with gr.Blocks() as demo:
|
62 |
+
button = gr.Radio(
|
63 |
+
label="Plot type",
|
64 |
+
choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot'
|
65 |
+
)
|
66 |
+
chose_context = gr.Radio(
|
67 |
+
label="Context LDA",
|
68 |
+
choices=['comment', 'sup comment', 'sup comment + comment'], value='scatter_plot'
|
69 |
+
)
|
70 |
+
plot = gr.Plot(label="Plot")
|
71 |
+
button.change(main, inputs=[button, chose_context], outputs=[plot])
|
72 |
+
demo.load(main, inputs=[button], outputs=[plot])
|
73 |
+
|
74 |
+
|
75 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nltk
|
2 |
+
spacy
|
3 |
+
gensim
|
4 |
+
sklearn
|