import gradio as gr import pandas as pd import matplotlib.pyplot as plt import numpy as np import nltk, spacy, gensim from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import CountVectorizer from pprint import pprint def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]: format_s = "{s}\n{c}" return [ format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment) ] def sent_to_words(sentences): for sentence in sentences: yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): #'NOUN', 'ADJ', 'VERB', 'ADV' texts_out = [] for sent in texts: doc = nlp(" ".join(sent)) texts_out.append(" ".join([ token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags ])) return texts_out def main(button, choose_context): df = pd.read_csv('./data/results.csv', index_col=0) if choose_context == 'comment': data = df.comment elif choose_context == 'sup comment': data = df.sup_comment elif choose_context == 'sup comment + comment': data = concat_comments(df.sup_comment, df.comment) data_words = list(sent_to_words(data)) nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"]) data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"]) #select noun and verb vectorizer = CountVectorizer( analyzer='word', min_df=10, stop_words='english', lowercase=True, token_pattern='[a-zA-Z0-9]{3,}' ) data_vectorized = vectorizer.fit_transform(data_lemmatized) lda_model = LatentDirichletAllocation( n_components=5, max_iter=10, learning_method='online', random_state=100, batch_size=128, evaluate_every = -1, n_jobs = -1, ) lda_output = lda_model.fit_transform(data_vectorized) print(lda_model) # Model attributes # Log Likelyhood: Higher the better print("Log Likelihood: ", lda_model.score(data_vectorized)) # Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word) print("Perplexity: ", lda_model.perplexity(data_vectorized)) # See model parameters pprint(lda_model.get_params()) best_lda_model = lda_model lda_output = best_lda_model.transform(data_vectorized) topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)] docnames = ["Doc" + str(i) for i in range(len(data))] df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames) dominant_topic = np.argmax(df_document_topic.values, axis=1) df_document_topic["dominant_topic"] = dominant_topic # Topic-Keyword Matrix df_topic_keywords = pd.DataFrame(best_lda_model.components_) df_topic_keywords # Assign Column and Index df_topic_keywords.columns = vectorizer.get_feature_names_out() df_topic_keywords.index = topicnames # View df_topic_keywords # Show top n keywords for each topic def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20): keywords = np.array(vectorizer.get_feature_names_out()) topic_keywords = [] for topic_weights in lda_model.components_: top_keyword_locs = (-topic_weights).argsort()[:n_words] topic_keywords.append(keywords.take(top_keyword_locs)) return topic_keywords topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15) # Topic - Keywords Dataframe df_topic_keywords = pd.DataFrame(topic_keywords) df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])] df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])] df_topic_keywords topics = [ f'Topic {i}' for i in range(len(df_topic_keywords)) ] df_topic_keywords["Topics"] = topics df_topic_keywords # # Define function to predict topic for a given text document. # nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner']) # def predict_topic(text, nlp=nlp): # global sent_to_words # global lemmatization # # Step 1: Clean with simple_preprocess # mytext_2 = list(sent_to_words(text)) # # Step 2: Lemmatize # mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']) # # Step 3: Vectorize transform # mytext_4 = vectorizer.transform(mytext_3) # # Step 4: LDA Transform # topic_probability_scores = best_lda_model.transform(mytext_4) # topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist() # # Step 5: Infer Topic # infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1] # #topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics] # return infer_topic, topic, topic_probability_scores # # Predict the topic # mytext = ["This is a test of a random topic where I talk about politics"] # infer_topic, topic, prob_scores = predict_topic(text = mytext) def apply_predict_topic(text): text = [text] infer_topic, topic, prob_scores = predict_topic(text = text) return(infer_topic) df["Topic_key_word"] = df['comment'].apply(apply_predict_topic) # plot subreddits = df.subreddit.value_counts().index[:22] weight_counts = { t: [ df[df.Topic_key_word == t].subreddit.value_counts()[subreddit] / df.subreddit.value_counts()[subreddit] for subreddit in subreddits ] for t in topics } irony_percs = { t: [ len( df[df.subreddit == subreddit][(df[df.subreddit == subreddit].Topic_key_word == t) & (df[df.subreddit == subreddit].label == 1)] ) / len( df[df.subreddit == subreddit] ) for subreddit in subreddits ] for t in topics } width = 0.9 fig, ax = plt.subplots(figsize = (10, 7)) plt.axhline(0.5, color = 'red', ls=":", alpha = .3) bottom = np.zeros(len(subreddits)) for k, v in weight_counts.items(): p = ax.bar(subreddits, v, width, label=k, bottom=bottom) ax.bar(subreddits, irony_percs[k], width - 0.01, bottom=bottom, color = 'black', edgecolor = 'white', alpha = .2, hatch = '\\') bottom += v ax.set_title("Perc of topics for each subreddit") ax.legend(loc="upper right") plt.xticks(rotation=70) return fig with gr.Blocks() as demo: button = gr.Radio( label="Plot type", choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot' ) choose_context = gr.Radio( label="Context LDA", choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment' ) plot = gr.Plot(label="Plot") button.change(main, inputs=[button, choose_context], outputs=[plot]) demo.load(main, inputs=[button], outputs=[plot]) # iface = gr.Interface(fn=greet, inputs="text", outputs="text") if __name__ == "__main__": demo.launch()