Spaces:
Runtime error
Runtime error
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl> | |
static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
template <int qk, int qi, typename block_q_t, int vdr> | |
static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx, | |
const void *__restrict__ vy, | |
float *__restrict__ dst, const int ncols, | |
const int nrows, | |
const sycl::nd_item<3> &item_ct1) { | |
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + | |
item_ct1.get_local_id(1); | |
if (row >= nrows) { | |
return; | |
} | |
const int blocks_per_row = ncols / qk; | |
const int blocks_per_warp = vdr * QK_WARP_SIZE / qi; | |
assert(blocks_per_warp>0); | |
// partial sum for each thread | |
float tmp = 0.0f; | |
const block_q_t * x = (const block_q_t *) vx; | |
const block_q8_1 * y = (const block_q8_1 *) vy; | |
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; | |
i += blocks_per_warp) { | |
const int ibx = row*blocks_per_row + i; // x block index | |
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx | |
const int iqs = | |
vdr * | |
(item_ct1.get_local_id(2) % | |
(qi / vdr)); // x block quant index when casting the quants to int | |
tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs); | |
} | |
// sum up partial sums and write back result | |
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
tmp += | |
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); | |
} | |
if (item_ct1.get_local_id(2) == 0) { | |
dst[row] = tmp; | |
} | |
} | |
static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK4_0 == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, | |
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK4_1 == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, | |
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK5_0 == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, | |
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK5_1 == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, | |
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK8_0 == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, | |
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, | |
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, | |
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, | |
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, | |
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, | |
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS/2, block_iq2_xxs, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; | |
auto ksigns64_ptr_ct1 = &ksigns64[0]; | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS/2, block_iq2_xs, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; | |
auto ksigns64_ptr_ct1 = &ksigns64[0]; | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S/2, block_iq2_s, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0]; | |
auto ksigns64_ptr_ct1 = &ksigns64[0]; | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS/2, block_iq3_xxs, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
auto iq3s_grid_ptr_ct1 = &iq3s_grid[0]; | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_S/2, block_iq3_s, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0]; | |
auto ksigns64_ptr_ct1 = &ksigns64[0]; | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK4_NL == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 2>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy, | |
float *dst, const int ncols, | |
const int nrows, | |
dpct::queue_ptr stream) { | |
GGML_ASSERT(ncols % QK_K == 0); | |
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; | |
const sycl::range<3> block_nums(1, 1, block_num_y); | |
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE); | |
{ | |
stream->submit([&](sycl::handler &cgh) { | |
cgh.parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) | |
[[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { | |
mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS/4, block_iq4_xs, 1>( | |
vx, vy, dst, ncols, nrows, item_ct1); | |
}); | |
}); | |
} | |
} | |
void ggml_sycl_op_mul_mat_vec_q( | |
ggml_backend_sycl_context & ctx, | |
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, | |
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i, | |
float *dst_dd_i, const int64_t row_low, const int64_t row_high, | |
const int64_t src1_ncols, const int64_t src1_padded_col_size, | |
const dpct::queue_ptr &stream) { | |
const int64_t ne10 = src1->ne[0]; | |
GGML_ASSERT(ne10 % QK8_1 == 0); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t row_diff = row_high - row_low; | |
int id; | |
SYCL_CHECK( | |
CHECK_TRY_ERROR(id = get_current_device_id())); | |
const size_t q8_1_ts = sizeof(block_q8_1); | |
const size_t q8_1_bs = QK8_1; | |
// the main device has a larger memory buffer to hold the results from all GPUs | |
// nrows_dst == nrows of the matrix that the kernel writes into | |
const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff; | |
for (int i = 0; i < src1_ncols; i++) | |
{ | |
const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs; | |
const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset; | |
float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0]; | |
switch (src0->type) { | |
case GGML_TYPE_Q4_0: | |
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q4_1: | |
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q5_0: | |
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q5_1: | |
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q8_0: | |
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q2_K: | |
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q3_K: | |
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q4_K: | |
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q5_K: | |
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_Q6_K: | |
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ1_S: | |
mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ1_M: | |
mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ2_XXS: | |
mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ2_XS: | |
mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ2_S: | |
mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ3_XXS: | |
mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ3_S: | |
mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ4_NL: | |
mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
case GGML_TYPE_IQ4_XS: | |
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); | |
break; | |
default: | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
(void) src1; | |
(void) dst; | |
(void) src1_ddf_i; | |
} | |