Spaces:
Runtime error
Runtime error
struct results_perplexity { | |
std::vector<llama_token> tokens; | |
double ppl_value; | |
std::vector<float> logits; | |
std::vector<float> probs; | |
}; | |
struct results_log_softmax { | |
double log_softmax; | |
float logit; | |
float prob; | |
}; | |
static void write_logfile( | |
const llama_context * ctx, const common_params & params, const llama_model * model, | |
const struct results_perplexity & results | |
) { | |
if (params.logdir.empty()) { | |
return; | |
} | |
if (params.hellaswag) { | |
LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__); | |
return; | |
} | |
const std::string timestamp = string_get_sortable_timestamp(); | |
const bool success = fs_create_directory_with_parents(params.logdir); | |
if (!success) { | |
LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n", | |
__func__, params.logdir.c_str()); | |
return; | |
} | |
const std::string logfile_path = params.logdir + timestamp + ".yml"; | |
FILE * logfile = fopen(logfile_path.c_str(), "w"); | |
if (logfile == NULL) { | |
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); | |
return; | |
} | |
fprintf(logfile, "binary: main\n"); | |
char model_desc[128]; | |
llama_model_desc(model, model_desc, sizeof(model_desc)); | |
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc); | |
fprintf(logfile, "\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "# Perplexity Results #\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "\n"); | |
yaml_dump_vector_float(logfile, "logits", results.logits); | |
fprintf(logfile, "ppl_value: %f\n", results.ppl_value); | |
yaml_dump_vector_float(logfile, "probs", results.probs); | |
llama_perf_dump_yaml(logfile, ctx); | |
fclose(logfile); | |
} | |
static std::vector<float> softmax(const std::vector<float>& logits) { | |
std::vector<float> probs(logits.size()); | |
float max_logit = logits[0]; | |
for (float v : logits) { | |
max_logit = std::max(max_logit, v); | |
} | |
double sum_exp = 0.0; | |
for (size_t i = 0; i < logits.size(); i++) { | |
// Subtract the maximum logit value from the current logit value for numerical stability | |
const float logit = logits[i] - max_logit; | |
const float exp_logit = expf(logit); | |
sum_exp += exp_logit; | |
probs[i] = exp_logit; | |
} | |
for (size_t i = 0; i < probs.size(); i++) { | |
probs[i] /= sum_exp; | |
} | |
return probs; | |
} | |
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { | |
float max_logit = logits[0]; | |
for (int i = 1; i < n_vocab; ++i) { | |
max_logit = std::max(max_logit, logits[i]); | |
} | |
double sum_exp = 0.0; | |
for (int i = 0; i < n_vocab; ++i) { | |
sum_exp += expf(logits[i] - max_logit); | |
} | |
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; | |
} | |
static inline int nearest_int(float fval) { | |
//assert(fval <= 4194303.f); | |
float val = fval + 12582912.f; | |
int i; memcpy(&i, &val, sizeof(int)); | |
return (i & 0x007fffff) - 0x00400000; | |
} | |
static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) { | |
float max_logit = logits[0]; | |
float min_logit = logits[0]; | |
for (int i = 1; i < n_vocab; ++i) { | |
max_logit = std::max(max_logit, logits[i]); | |
min_logit = std::min(min_logit, logits[i]); | |
} | |
min_logit = std::max(min_logit, max_logit - 16); | |
double sum_exp = 0.0; | |
for (int i = 0; i < n_vocab; ++i) { | |
sum_exp += expf(logits[i] - max_logit); | |
} | |
const float log_sum_exp = log(sum_exp); | |
const float min_log_prob = min_logit - max_logit - log_sum_exp; | |
const float scale = (max_logit - min_logit)/65535.f; | |
float * d = (float *)log_prob; | |
d[0] = scale; | |
d[1] = min_log_prob; | |
log_prob += 4; | |
if (scale) { | |
const float inv_scale = 1/scale; | |
for (int i = 0; i < n_vocab; ++i) { | |
log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; | |
} | |
} else { | |
std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); | |
} | |
return max_logit + log_sum_exp - logits[tok]; | |
} | |
static void process_logits( | |
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers, | |
double & nll, double & nll2, float * logit_history, float * prob_history | |
) { | |
std::mutex mutex; | |
int counter = 0; | |
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { | |
double local_nll = 0; | |
double local_nll2 = 0; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
int i = counter++; | |
if (i >= n_token) { | |
nll += local_nll; nll2 += local_nll2; | |
break; | |
} | |
lock.unlock(); | |
const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]); | |
const double v = -results.log_softmax; | |
local_nll += v; | |
local_nll2 += v*v; | |
logit_history[i] = results.logit; | |
prob_history[i] = results.prob; | |
} | |
}; | |
for (auto & w : workers) { | |
w = std::thread(compute); | |
} | |
compute(); | |
for (auto & w : workers) { | |
w.join(); | |
} | |
} | |
static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token, | |
std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) { | |
std::mutex mutex; | |
const int nv = 2*((n_vocab + 1)/2) + 4; | |
int counter = 0; | |
auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { | |
double local_nll = 0; | |
double local_nll2 = 0; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
int i = counter++; | |
if (i >= n_token) { | |
nll += local_nll; nll2 += local_nll2; | |
break; | |
} | |
lock.unlock(); | |
const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]); | |
local_nll += v; | |
local_nll2 += v*v; | |
} | |
}; | |
for (auto & w : workers) { | |
w = std::thread(compute); | |
} | |
compute(); | |
for (auto & w : workers) { | |
w.join(); | |
} | |
out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); | |
} | |
struct kl_divergence_result { | |
double sum_nll = 0.0; | |
double sum_nll2 = 0.0; | |
double sum_nll_base = 0.0; | |
double sum_nll_base2 = 0.0; | |
double sum_nll_nll_base = 0.0; | |
double sum_kld = 0.0; | |
double sum_kld2 = 0.0; | |
double sum_p_diff = 0.0; | |
double sum_p_diff2 = 0.0; | |
double sum_p_diff4 = 0.0; | |
float max_p_diff = 0.0f; | |
size_t n_same_top = 0.0; | |
size_t count = 0.0; | |
}; | |
static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { | |
float max_logit = logits[0]; | |
int imax = 0; | |
for (int i = 1; i < n_vocab; ++i) { | |
if (logits[i] > max_logit) { | |
max_logit = logits[i]; | |
imax = i; | |
} | |
} | |
double sum_exp = 0.0; | |
for (int i = 0; i < n_vocab; ++i) { | |
sum_exp += expf(logits[i] - max_logit); | |
} | |
const float log_sum_exp = log(sum_exp); | |
const float * d = (const float *)base_log_prob; | |
const float scale = d[0]; | |
const float min_log_prob = d[1]; | |
base_log_prob += 4; | |
const float nll = max_logit + log_sum_exp - logits[tok]; | |
kld.sum_nll += nll; | |
kld.sum_nll2 += nll*nll; | |
const float nll_base = -(scale*base_log_prob[tok] + min_log_prob); | |
kld.sum_nll_base += nll_base; | |
kld.sum_nll_base2 += nll_base*nll_base; | |
kld.sum_nll_nll_base += nll*nll_base; | |
max_logit += log_sum_exp; | |
double sum = 0; | |
int imax_base = -1; | |
float p_log_base_max = 0; | |
for (int i = 0; i < n_vocab; ++i) { | |
const float p_log_base = scale*base_log_prob[i] + min_log_prob; | |
if (i == 0 || p_log_base > p_log_base_max) { | |
p_log_base_max = p_log_base; | |
imax_base = i; | |
} | |
if (p_log_base > -16.f) { | |
const float p_base = expf(p_log_base); | |
sum += p_base * (p_log_base - logits[i] + max_logit); | |
} | |
} | |
kld.sum_kld += sum; | |
kld.sum_kld2 += sum*sum; | |
++kld.count; | |
if (imax == imax_base) { | |
++kld.n_same_top; | |
} | |
const float p_base = expf(-nll_base); | |
const float p = expf(-nll); | |
const float p_diff = p - p_base; | |
kld.sum_p_diff += p_diff; | |
const double p_diff2 = p_diff*p_diff; | |
kld.sum_p_diff2 += p_diff2; | |
kld.sum_p_diff4 += p_diff2*p_diff2; | |
kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff)); | |
return std::make_pair(sum, p_diff); | |
} | |
static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, | |
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld, | |
float * kld_values, float * p_diff_values) { | |
std::mutex mutex; | |
const int nv = 2*((n_vocab + 1)/2) + 4; | |
int counter = 0; | |
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () { | |
kl_divergence_result local_kld; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
int i = counter++; | |
if (i >= n_token) { | |
kld.sum_nll += local_kld.sum_nll; | |
kld.sum_nll2 += local_kld.sum_nll2; | |
kld.sum_nll_base += local_kld.sum_nll_base; | |
kld.sum_nll_base2 += local_kld.sum_nll_base2; | |
kld.sum_nll_nll_base += local_kld.sum_nll_nll_base; | |
kld.sum_kld += local_kld.sum_kld; | |
kld.sum_kld2 += local_kld.sum_kld2; | |
kld.sum_p_diff += local_kld.sum_p_diff; | |
kld.sum_p_diff2 += local_kld.sum_p_diff2; | |
kld.sum_p_diff4 += local_kld.sum_p_diff4; | |
kld.n_same_top += local_kld.n_same_top; | |
kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff); | |
kld.count += local_kld.count; | |
break; | |
} | |
lock.unlock(); | |
std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); | |
kld_values[i] = (float)v.first; | |
p_diff_values[i] = v.second; | |
} | |
}; | |
for (auto & w : workers) { | |
w = std::thread(compute); | |
} | |
compute(); | |
for (auto & w : workers) { | |
w.join(); | |
} | |
} | |
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) { | |
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip | |
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` | |
// Output: `perplexity: 13.5106 [114/114]` | |
// BOS tokens will be added for each chunk before eval | |
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); | |
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); | |
LOG_INF("%s: tokenizing the input ..\n", __func__); | |
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true); | |
const int n_ctx = llama_n_ctx(ctx); | |
if (int(tokens.size()) < 2*n_ctx) { | |
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, | |
n_ctx); | |
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); | |
return {std::move(tokens), 0., {}, {}}; | |
} | |
std::vector<float> logit_history; | |
std::vector<float> prob_history; | |
logit_history.resize(tokens.size()); | |
prob_history.resize(tokens.size()); | |
if (params.ppl_stride <= 0) { | |
LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); | |
return {tokens, -1, logit_history, prob_history}; | |
} | |
const int calc_chunk = n_ctx; | |
LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); | |
if (int(tokens.size()) <= calc_chunk) { | |
LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, | |
tokens.size(), n_ctx, params.ppl_stride); | |
return {tokens, -1, logit_history, prob_history}; | |
} | |
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; | |
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); | |
const int n_batch = params.n_batch; | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
int count = 0; | |
double nll = 0.0; | |
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); | |
for (int i = 0; i < n_chunk; ++i) { | |
const int start = i * params.ppl_stride; | |
const int end = start + calc_chunk; | |
const int num_batches = (calc_chunk + n_batch - 1) / n_batch; | |
//LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); | |
std::vector<float> logits; | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
// clear the KV cache | |
llama_kv_cache_clear(ctx); | |
llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
common_batch_clear(batch); | |
for (int i = 0; i < batch_size; i++) { | |
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); | |
} | |
//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); | |
if (llama_decode(ctx, batch)) { | |
//LOG_ERR("%s : failed to eval\n", __func__); | |
llama_batch_free(batch); | |
return {tokens, -1, logit_history, prob_history}; | |
} | |
// save original token and restore it after eval | |
const auto token_org = tokens[batch_start]; | |
// add BOS token for the first batch of each chunk | |
if (add_bos && j == 0) { | |
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); | |
} | |
const auto * batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab); | |
if (j == 0) { | |
tokens[batch_start] = token_org; | |
} | |
} | |
llama_batch_free(batch); | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
if (i == 0) { | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total * n_chunk); | |
if (total_seconds >= 60*60) { | |
LOG("%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
LOG("%.2f minutes\n", total_seconds / 60.0); | |
} | |
//LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); | |
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { | |
// Calculate probability of next token, given the previous ones. | |
const std::vector<float> tok_logits( | |
logits.begin() + size_t(j + 0) * n_vocab, | |
logits.begin() + size_t(j + 1) * n_vocab); | |
const float prob = softmax(tok_logits)[tokens[start + j + 1]]; | |
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; | |
prob_history[start + j + 1] = prob; | |
nll += -std::log(prob); | |
++count; | |
} | |
// perplexity is e^(average negative log-likelihood) | |
if (params.ppl_output_type == 0) { | |
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count)); | |
} else { | |
LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); | |
} | |
} | |
LOG("\n"); | |
return {tokens, std::exp(nll / count), logit_history, prob_history}; | |
} | |
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) { | |
if (params.ppl_stride > 0) { | |
return perplexity_v2(ctx, params); | |
} | |
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip | |
// Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` | |
// Output: `perplexity: 13.5106 [114/114]` | |
// BOS tokens will be added for each chunk before eval | |
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); | |
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); | |
std::ofstream logits_stream; | |
if (!params.logits_file.empty()) { | |
logits_stream.open(params.logits_file.c_str(), std::ios::binary); | |
if (!logits_stream.is_open()) { | |
LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); | |
return {}; | |
} | |
LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); | |
logits_stream.write("_logits_", 8); | |
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx)); | |
} | |
auto tim1 = std::chrono::high_resolution_clock::now(); | |
LOG_INF("%s: tokenizing the input ..\n", __func__); | |
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true); | |
auto tim2 = std::chrono::high_resolution_clock::now(); | |
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count()); | |
if (int(tokens.size()) < 2*n_ctx) { | |
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, | |
n_ctx); | |
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); | |
return {std::move(tokens), 0., {}, {}}; | |
} | |
std::vector<float> logit_history; | |
logit_history.resize(tokens.size()); | |
std::vector<float> prob_history; | |
prob_history.resize(tokens.size()); | |
const int n_chunk_max = tokens.size() / n_ctx; | |
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); | |
const int n_batch = params.n_batch; | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
int count = 0; | |
double nll = 0.0; | |
double nll2 = 0.0; | |
const int num_batches = (n_ctx + n_batch - 1) / n_batch; | |
const int n_seq = std::max(1, n_batch / n_ctx); | |
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); | |
GGML_ASSERT(params.n_ctx == n_seq * n_ctx); | |
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); | |
std::vector<float> logits; | |
if (num_batches > 1) { | |
logits.reserve(size_t(n_ctx) * n_vocab); | |
} | |
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); | |
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); | |
std::vector<uint16_t> log_probs; | |
if (!params.logits_file.empty()) { | |
logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); | |
logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); | |
logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0])); | |
const int nv = 2*((n_vocab + 1)/2) + 4; | |
log_probs.resize(n_ctx * nv); | |
} | |
// We get the logits for all the tokens in the context window (params.n_ctx) | |
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, | |
// calculate the perplexity over the last half of the window (so the model always has | |
// some context to predict the token). | |
// | |
// We rely on the fact that attention in the forward pass only looks at previous | |
// tokens here, so the logits returned for each token are an accurate representation | |
// of what the model would have predicted at that point. | |
// | |
// Example, we have a context window of 512, we will compute perplexity for each of the | |
// last 256 tokens. Then, we split the input up into context window size chunks to | |
// process the entire prompt. | |
const int first = n_ctx/2; | |
for (int i = 0; i < n_chunk; i += n_seq) { | |
const int start = i * n_ctx; | |
const int end = start + n_ctx; | |
const int n_seq_batch = std::min(n_seq, n_chunk - i); | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
// clear the KV cache | |
llama_kv_cache_clear(ctx); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
int n_outputs = 0; | |
batch.n_tokens = 0; | |
for (int seq = 0; seq < n_seq_batch; seq++) { | |
int seq_start = batch_start + seq*n_ctx; | |
// save original token and restore it after eval | |
const auto token_org = tokens[seq_start]; | |
// add BOS token for the first batch of each chunk | |
if (add_bos && j == 0) { | |
tokens[seq_start] = llama_token_bos(llama_get_model(ctx)); | |
} | |
for (int k = 0; k < batch_size; ++k) { | |
const int idx = seq*n_ctx + k; | |
batch.token [idx] = tokens[seq_start + k]; | |
batch.pos [idx] = j*n_batch + k; | |
batch.n_seq_id[idx] = 1; | |
batch.seq_id [idx][0] = seq; | |
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0; | |
n_outputs += batch.logits[idx] != 0; | |
} | |
batch.n_tokens += batch_size; | |
// restore the original token in case it was set to BOS | |
tokens[seq_start] = token_org; | |
} | |
if (llama_decode(ctx, batch)) { | |
LOG_INF("%s : failed to eval\n", __func__); | |
return {tokens, -1, logit_history, prob_history}; | |
} | |
if (num_batches > 1 && n_outputs > 0) { | |
const auto * batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab); | |
} | |
} | |
if (i == 0) { | |
llama_synchronize(ctx); | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total*n_chunk/n_seq); | |
if (total_seconds >= 60*60) { | |
LOG("%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
LOG("%.2f minutes\n", total_seconds / 60.0); | |
} | |
for (int seq = 0; seq < n_seq_batch; seq++) { | |
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first); | |
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; | |
if (!params.logits_file.empty()) { | |
process_logits(logits_stream, n_vocab, all_logits, | |
tokens_data, n_ctx - 1 - first, | |
workers, log_probs, nll, nll2); | |
} else { | |
process_logits(n_vocab, all_logits, | |
tokens_data, n_ctx - 1 - first, | |
workers, nll, nll2, | |
logit_history.data() + start + seq*n_ctx + first, | |
prob_history.data() + start + seq*n_ctx + first); | |
} | |
count += n_ctx - first - 1; | |
// perplexity is e^(average negative log-likelihood) | |
if (params.ppl_output_type == 0) { | |
LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); | |
} else { | |
double av = nll/count; | |
double av2 = nll2/count - av*av; | |
if (av2 > 0) { | |
av2 = sqrt(av2/(count-1)); | |
} | |
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); | |
} | |
} | |
logits.clear(); | |
} | |
LOG("\n"); | |
nll2 /= count; | |
nll /= count; | |
const double ppl = exp(nll); | |
nll2 -= nll * nll; | |
if (nll2 > 0) { | |
nll2 = sqrt(nll2/(count-1)); | |
LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); | |
} else { | |
LOG_ERR("Unexpected negative standard deviation of log(prob)\n"); | |
} | |
llama_batch_free(batch); | |
return {tokens, ppl, logit_history, prob_history}; | |
} | |
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) { | |
int prev_outputs = 0; | |
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) { | |
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i); | |
llama_batch batch_view = { | |
n_tokens, | |
batch.token + i, | |
nullptr, | |
batch.pos + i, | |
batch.n_seq_id + i, | |
batch.seq_id + i, | |
batch.logits + i, | |
}; | |
const int ret = llama_decode(ctx, batch_view); | |
if (ret != 0) { | |
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); | |
return false; | |
} | |
int n_outputs = 0; | |
for (int i = 0; i < n_tokens; ++i) { | |
n_outputs += batch_view.logits[i] != 0; | |
} | |
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float)); | |
prev_outputs += n_outputs; | |
} | |
return true; | |
} | |
static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers, | |
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) { | |
if (eval_results.size() != eval_pairs.size()) { | |
eval_results.resize(eval_pairs.size()); | |
} | |
if (eval_pairs.empty()) { | |
return; | |
} | |
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size()); | |
std::atomic<int> counter(0); | |
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { | |
float local_logprobs[K_TOKEN_CHUNK]; | |
while (true) { | |
const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed); | |
if (first >= eval_results.size()) { | |
break; | |
} | |
const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size()); | |
for (size_t i = first; i < last; ++i) { | |
const auto * logits = batch_logits + eval_pairs[i].first * n_vocab; | |
float max_logit = logits[0]; | |
for (int j = 1; j < n_vocab; ++j) { | |
max_logit = std::max(max_logit, logits[j]); | |
} | |
float sum_p = 0.f; | |
for (int j = 0; j < n_vocab; ++j) { | |
sum_p += expf(logits[j] - max_logit); | |
} | |
local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p); | |
} | |
std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float)); | |
} | |
}; | |
for (size_t it = 0; it < max_threads; ++it) { | |
workers[it] = std::thread(compute); | |
} | |
for (size_t it = 0; it < max_threads; ++it) { | |
workers[it].join(); | |
} | |
} | |
static void hellaswag_score(llama_context * ctx, const common_params & params) { | |
// Calculates hellaswag score (acc_norm) from prompt | |
// | |
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl | |
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 | |
// | |
// All 10042 tasks should be extracted to keep the results standardized like other implementations. | |
// | |
// Datafile layout: | |
// ['??'] denotes json fields | |
// 6 lines per task: | |
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context | |
// ['label'] - The index the best common sense ending aka gold ending | |
// ['endings'][0] - Endings added to the first part of the query | |
// ['endings'][1] | |
// ['endings'][2] | |
// ['endings'][3] | |
std::vector<std::string> prompt_lines; | |
std::istringstream strstream(params.prompt); | |
std::string line; | |
while (std::getline(strstream,line,'\n')) { | |
prompt_lines.push_back(line); | |
} | |
if (prompt_lines.size() % 6 != 0) { | |
LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__); | |
return; | |
} | |
size_t hs_task_count = prompt_lines.size()/6; | |
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); | |
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; | |
LOG_INF("================================= is_spm = %d\n", is_spm); | |
// The tasks should be randomized so the score stabilizes quickly. | |
bool randomize_tasks = true; | |
// Number of tasks to use when computing the score | |
if (params.hellaswag_tasks < hs_task_count) { | |
hs_task_count = params.hellaswag_tasks; | |
} | |
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now | |
std::mt19937 rng(1); | |
// Dataholder for hellaswag tasks | |
struct hs_data_t { | |
std::string context; | |
size_t gold_ending_idx; | |
std::string ending[4]; | |
size_t ending_logprob_count[4]; | |
double ending_logprob[4]; | |
size_t i_logits; // starting index of logits in the llama_batch | |
size_t common_prefix; // max number of initial tokens that are the same in all sentences | |
size_t required_tokens; // needed number of tokens to evaluate all 4 endings | |
std::vector<llama_token> seq_tokens[4]; | |
}; | |
LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); | |
// Select and read data from prompt lines | |
std::vector<hs_data_t> hs_data(hs_task_count); | |
for (size_t i = 0; i < hs_task_count; i++) { | |
size_t idx = i; | |
auto & hs_cur = hs_data[i]; | |
// Select a random example of those left in the prompt | |
if (randomize_tasks) { | |
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ; | |
idx = dist(rng); | |
} | |
hs_cur.context = prompt_lines[idx*6]; | |
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); | |
for (size_t j = 0; j < 4; j++) { | |
hs_cur.ending[j] = prompt_lines[idx*6+2+j]; | |
hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true); | |
} | |
// determine the common prefix of the endings | |
hs_cur.common_prefix = 0; | |
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { | |
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || | |
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || | |
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) { | |
break; | |
} | |
hs_cur.common_prefix++; | |
} | |
hs_cur.required_tokens = hs_cur.common_prefix + | |
hs_cur.seq_tokens[0].size() - hs_cur.common_prefix + | |
hs_cur.seq_tokens[1].size() - hs_cur.common_prefix + | |
hs_cur.seq_tokens[2].size() - hs_cur.common_prefix + | |
hs_cur.seq_tokens[3].size() - hs_cur.common_prefix; | |
//GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size()); | |
// Delete the selected random example from the prompt | |
if (randomize_tasks) { | |
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); | |
} | |
} | |
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__); | |
LOG("\ntask\tacc_norm\n"); | |
double acc = 0.0f; | |
const int n_ctx = llama_n_ctx(ctx); | |
const int n_batch = params.n_batch; | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
const int max_tasks_per_batch = 32; | |
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); | |
llama_batch batch = llama_batch_init(n_ctx, 0, 4); | |
std::vector<float> tok_logits(n_vocab); | |
// TODO: this could be made smaller; it's currently the worst-case size | |
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); | |
std::vector<std::pair<size_t, llama_token>> eval_pairs; | |
std::vector<float> eval_results; | |
std::vector<std::thread> workers(std::thread::hardware_concurrency()); | |
for (size_t i0 = 0; i0 < hs_task_count; i0++) { | |
int n_cur = 0; | |
size_t i1 = i0; | |
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch | |
common_batch_clear(batch); | |
// batch as much tasks as possible into the available context | |
// each task has 4 unique sequence ids - one for each ending | |
// the common prefix is shared among the 4 sequences to save tokens | |
// we extract logits only from the last common token and from all ending tokens of each sequence | |
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) { | |
auto & hs_cur = hs_data[i1]; | |
int n_logits = 0; | |
const int s0 = 4*(i1 - i0); | |
if (s0 + 4 > max_seq) { | |
break; | |
} | |
for (size_t i = 0; i < hs_cur.common_prefix; ++i) { | |
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false); | |
} | |
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix | |
n_logits += 1; | |
for (int s = 0; s < 4; ++s) { | |
const size_t seq_tokens_size = hs_cur.seq_tokens[s].size(); | |
// TODO: don't evaluate the last token of each sequence | |
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) { | |
const bool needs_logits = i < seq_tokens_size - 1; | |
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits); | |
n_logits += needs_logits; | |
} | |
} | |
hs_cur.i_logits = i_logits; | |
i_logits += n_logits; | |
n_cur += hs_data[i1].required_tokens; | |
if (++i1 == hs_task_count) { | |
break; | |
} | |
} | |
if (i0 == i1) { | |
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); | |
return; | |
} | |
llama_kv_cache_clear(ctx); | |
// decode all tasks [i0, i1) | |
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return; | |
} | |
// Compute log-probs in parallel | |
// First we collect all tasks | |
eval_pairs.clear(); | |
for (size_t i = i0; i < i1; ++i) { | |
auto & hs_cur = hs_data[i]; | |
size_t li = 1; // skip the last logit of the common prefix (computed separately below) | |
for (int s = 0; s < 4; ++s) { | |
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { | |
eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]); | |
} | |
} | |
} | |
// Then we do the actual calculation | |
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); | |
size_t ir = 0; | |
// compute the logprobs for each ending of the decoded tasks | |
for (size_t i = i0; i < i1; ++i) { | |
auto & hs_cur = hs_data[i]; | |
// get the logits of the last token of the common prefix | |
std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float)); | |
const auto first_probs = softmax(tok_logits); | |
for (int s = 0; s < 4; ++s) { | |
hs_cur.ending_logprob_count[s] = 1; | |
hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]); | |
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { | |
hs_cur.ending_logprob[s] += eval_results[ir++]; | |
hs_cur.ending_logprob_count[s]++; | |
} | |
hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s]; | |
} | |
// Find the ending with maximum logprob | |
size_t ending_logprob_max_idx = 0; | |
double ending_logprob_max_val = hs_cur.ending_logprob[0]; | |
for (size_t s = 1; s < 4; s++) { | |
if (hs_cur.ending_logprob[s] > ending_logprob_max_val) { | |
ending_logprob_max_idx = s; | |
ending_logprob_max_val = hs_cur.ending_logprob[s]; | |
} | |
} | |
//LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx); | |
// If the gold ending got the maximum logprobe add one accuracy point | |
if (ending_logprob_max_idx == hs_cur.gold_ending_idx) { | |
acc += 1.0; | |
} | |
// Print the accumulated accuracy mean x 100 | |
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0); | |
} | |
i0 = i1 - 1; | |
} | |
llama_batch_free(batch); | |
LOG("\n"); | |
} | |
struct winogrande_entry { | |
std::string first; | |
std::string second; | |
std::array<std::string, 2> choices; | |
int answer; | |
size_t i_logits; | |
size_t common_prefix; | |
size_t required_tokens; | |
size_t n_base1; // number of tokens for context + choice 1 | |
size_t n_base2; // number of tokens for context + choice 2 | |
std::vector<llama_token> seq_tokens[2]; | |
}; | |
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) { | |
std::vector<winogrande_entry> result; | |
std::istringstream in(prompt); | |
std::string line; | |
std::array<int, 4> comma_pos; | |
while (true) { | |
std::getline(in, line); | |
if (in.fail() || in.eof()) break; | |
int ipos = 0; | |
bool quote_open = false; | |
for (int i = 0; i < int(line.size()); ++i) { | |
if (!quote_open) { | |
if (line[i] == ',') { | |
comma_pos[ipos++] = i; | |
if (ipos == 4) break; | |
} | |
else if (line[i] == '"') { | |
quote_open = true; | |
} | |
} | |
else { | |
if (line[i] == '"') { | |
quote_open = false; | |
} | |
} | |
} | |
if (ipos != 4) { | |
LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str()); | |
continue; | |
} | |
auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3) | |
: line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1); | |
auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1); | |
auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1); | |
auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1); | |
auto index = line.substr(0, comma_pos[0]); | |
int where = 0; | |
for ( ; where < int(sentence.size()); ++where) { | |
if (sentence[where] == '_') break; | |
} | |
if (where == int(sentence.size())) { | |
LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str()); | |
continue; | |
} | |
std::istringstream stream(answer.c_str()); | |
int i_answer; stream >> i_answer; | |
if (stream.fail() || i_answer < 1 || i_answer > 2) { | |
LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str()); | |
continue; | |
} | |
result.emplace_back(); | |
auto& wg = result.back(); | |
wg.first = sentence.substr(0, where); | |
wg.second = sentence.substr(where + 1, sentence.size() - where - 1); | |
wg.choices[0] = std::move(choice1); | |
wg.choices[1] = std::move(choice2); | |
wg.answer = i_answer; | |
} | |
return result; | |
} | |
/* | |
* Evaluates the Winogrande score. | |
* Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2) | |
* You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp | |
* As an example, the 1st row in the above dataset is | |
* | |
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2 | |
* | |
*/ | |
static void winogrande_score(llama_context * ctx, const common_params & params) { | |
constexpr int k_min_trailing_ctx = 3; | |
auto data = load_winogrande_from_csv(params.prompt); | |
if (data.empty()) { | |
LOG_ERR("%s: no tasks\n", __func__); | |
return; | |
} | |
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size()); | |
if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) { | |
LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks); | |
std::mt19937 rng(1); | |
std::vector<int> aux(data.size()); | |
for (int i = 0; i < int(data.size()); ++i) { | |
aux[i] = i; | |
} | |
float scale = 1/(1.f + (float)rng.max()); | |
std::vector<winogrande_entry> selected; | |
selected.resize(params.winogrande_tasks); | |
for (int i = 0; i < int(params.winogrande_tasks); ++i) { | |
int j = int(scale*rng()*aux.size()); | |
selected[i] = std::move(data[aux[j]]); | |
aux[j] = aux.back(); | |
aux.pop_back(); | |
} | |
data = std::move(selected); | |
} | |
LOG_INF("%s : tokenizing selected tasks\n", __func__); | |
for (auto & task : data) { | |
task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true); | |
task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true); | |
task.common_prefix = 0; | |
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) { | |
if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) { | |
break; | |
} | |
task.common_prefix++; | |
} | |
// TODO: the last token of each of the sequences don't need to be evaluated | |
task.required_tokens = task.common_prefix + | |
task.seq_tokens[0].size() - task.common_prefix + | |
task.seq_tokens[1].size() - task.common_prefix; | |
task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size(); | |
task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size(); | |
} | |
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__); | |
const int n_ctx = llama_n_ctx(ctx); | |
const int n_batch = params.n_batch; | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
const int max_tasks_per_batch = 128; | |
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); | |
llama_batch batch = llama_batch_init(n_ctx, 0, 2); | |
std::vector<float> tok_logits(n_vocab); | |
// TODO: this could be made smaller; it's currently the worst-case size | |
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); | |
std::vector<std::pair<size_t, llama_token>> eval_pairs; | |
std::vector<float> eval_results; | |
std::vector<std::thread> workers(std::thread::hardware_concurrency()); | |
int n_correct = 0; | |
int n_done = 0; | |
for (size_t i0 = 0; i0 < data.size(); i0++) { | |
int n_cur = 0; | |
size_t i1 = i0; | |
size_t i_logits = 0; | |
common_batch_clear(batch); | |
while (n_cur + (int) data[i1].required_tokens <= n_ctx) { | |
int n_logits = 0; | |
const int s0 = 2*(i1 - i0); | |
if (s0 + 2 > max_seq) { | |
break; | |
} | |
for (size_t i = 0; i < data[i1].common_prefix; ++i) { | |
common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false); | |
} | |
batch.logits[batch.n_tokens - 1] = true; | |
n_logits += 1; | |
for (int s = 0; s < 2; ++s) { | |
// TODO: end before the last token, no need to predict past the end of the sequences | |
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) { | |
common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true); | |
n_logits += 1; | |
} | |
} | |
data[i1].i_logits = i_logits; | |
i_logits += n_logits; | |
n_cur += data[i1].required_tokens; | |
if (++i1 == data.size()) { | |
break; | |
} | |
} | |
if (i0 == i1) { | |
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); | |
return; | |
} | |
llama_kv_cache_clear(ctx); | |
// decode all tasks [i0, i1) | |
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return; | |
} | |
eval_pairs.clear(); | |
for (size_t i = i0; i < i1; ++i) { | |
auto & task = data[i]; | |
const bool skip_choice = | |
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && | |
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; | |
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; | |
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; | |
size_t li = n_base1 - task.common_prefix; | |
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { | |
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]); | |
} | |
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; | |
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; | |
// FIXME: this uses the wrong first logits when not skipping the choice word | |
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix; | |
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { | |
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]); | |
} | |
} | |
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); | |
size_t ir = 0; | |
for (size_t i = i0; i < i1; ++i) { | |
auto & task = data[i]; | |
const bool skip_choice = | |
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && | |
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; | |
float score_1st = 0; | |
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; | |
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; | |
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { | |
score_1st += eval_results[ir++]; | |
} | |
score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st); | |
float score_2nd = 0; | |
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; | |
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; | |
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { | |
score_2nd += eval_results[ir++]; | |
} | |
score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd); | |
int result = score_1st > score_2nd ? 1 : 2; | |
if (result == task.answer) { | |
++n_correct; | |
} | |
++n_done; | |
// print the accumulated accuracy mean x 100 | |
LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer); | |
} | |
i0 = i1 - 1; | |
} | |
LOG("\n"); | |
if (n_done < 100) return; | |
const float p = 1.f*n_correct/n_done; | |
const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1)); | |
LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); | |
} | |
static bool deserialize_string(std::istream & in, std::string & str) { | |
uint32_t size; | |
if (!in.read((char *)&size, sizeof(size)).fail()) { | |
str.resize(size); | |
if (!in.read((char *)&str[0], size).fail()) return true; | |
} | |
return false; | |
} | |
struct multiple_choice_answers { | |
std::vector<std::string> answers; | |
std::vector<int> labels; | |
bool deserialize(std::istream& in) { | |
uint32_t n; | |
in.read((char *)&n, sizeof(n)); | |
if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose | |
answers.resize(n); | |
labels.resize(n); | |
for (auto& a : answers) { | |
if (!deserialize_string(in, a)) return false; | |
} | |
in.read((char *)labels.data(), n*sizeof(int)); | |
return !in.fail(); | |
} | |
}; | |
struct multiple_choice_task { | |
std::string question; // the question (or context that needs to be continued) | |
multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer | |
multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet | |
bool deserialize(std::istream& in) { | |
if (!deserialize_string(in, question)) return false; | |
return mc1.deserialize(in) && mc2.deserialize(in); | |
} | |
// For evaluation | |
size_t i_logits; // starting index of logits in the llama_batch | |
size_t common_prefix; // max number of initial tokens that are the same in all sentences | |
size_t required_tokens; // needed number of tokens to evaluate all answers | |
std::vector<std::vector<llama_token>> seq_tokens; | |
std::vector<float> log_probs; | |
}; | |
static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) { | |
if (task.question.empty() || task.mc1.answers.empty()) { | |
if (log_error) { | |
LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__); | |
} | |
return false; | |
} | |
task.seq_tokens.reserve(task.mc1.answers.size()); | |
for (auto& answer : task.mc1.answers) { | |
if (answer.empty()) { | |
if (log_error) { | |
LOG_ERR("%s: found empty answer\n", __func__); | |
} | |
return false; | |
} | |
task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true)); | |
} | |
auto min_len = task.seq_tokens.front().size(); | |
for (auto& seq : task.seq_tokens) { | |
min_len = std::min(min_len, seq.size()); | |
} | |
task.common_prefix = 0; | |
for (size_t k = 0; k < min_len; ++k) { | |
auto token = task.seq_tokens[0][k]; | |
bool all_same = true; | |
for (size_t i = 1; i < task.seq_tokens.size(); ++i) { | |
if (task.seq_tokens[i][k] != token) { | |
all_same = false; | |
break; | |
} | |
} | |
if (!all_same) { | |
break; | |
} | |
++task.common_prefix; | |
} | |
task.required_tokens = task.common_prefix; | |
for (auto& seq : task.seq_tokens) { | |
task.required_tokens += seq.size() - task.common_prefix; | |
} | |
return true; | |
} | |
// | |
// Calculates score for multiple choice tasks with single correct answer from prompt. | |
// Commonly used LLM evaluation metrics of this type are | |
// * ARC | |
// * HellaSwag | |
// * MMLU | |
// * TruthfulQA | |
// | |
// Validation datasets for these 4 tests can be found at | |
// https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp | |
// The data for these datasets was extracted from | |
// git@hf.co:datasets/allenai/ai2_arc | |
// https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl | |
// git@hf.co:datasets/Stevross/mmlu | |
// https://huggingface.co/datasets/truthful_qa | |
// | |
static void multiple_choice_score(llama_context * ctx, const common_params & params) { | |
std::istringstream strstream(params.prompt); | |
uint32_t n_task; | |
strstream.read((char *)&n_task, sizeof(n_task)); | |
if (strstream.fail() || n_task == 0) { | |
LOG_ERR("%s: no tasks\n", __func__); | |
return; | |
} | |
LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task); | |
std::vector<uint32_t> task_pos(n_task); | |
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); | |
if (strstream.fail()) { | |
LOG_ERR("%s: failed to read task positions from prompt\n", __func__); | |
return; | |
} | |
std::vector<multiple_choice_task> tasks; | |
if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) { | |
// Use all tasks | |
tasks.resize(n_task); | |
LOG_INF("%s: reading tasks", __func__); | |
int n_dot = std::max((int) n_task/100, 1); | |
int i = 0; | |
for (auto& task : tasks) { | |
++i; | |
if (!task.deserialize(strstream)) { | |
LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task); | |
return; | |
} | |
if (i%n_dot == 0) LOG("."); | |
} | |
LOG("done\n"); | |
} | |
else { | |
LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task); | |
std::mt19937 rng(1); | |
std::vector<int> aux(n_task); | |
for (uint32_t i = 0; i < n_task; ++i) aux[i] = i; | |
float scale = 1.f/(1.f + (float)std::mt19937::max()); | |
tasks.resize(params.multiple_choice_tasks); | |
for (auto& task : tasks) { | |
int j = (int)(scale * rng() * aux.size()); | |
int idx = aux[j]; | |
aux[j] = aux.back(); | |
aux.pop_back(); | |
strstream.seekg(task_pos[idx], std::ios::beg); | |
if (!task.deserialize(strstream)) { | |
LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]); | |
return; | |
} | |
} | |
n_task = params.multiple_choice_tasks; | |
} | |
LOG_INF("%s: preparing task data", __func__); | |
if (n_task > 500) { | |
LOG("..."); | |
std::atomic<int> counter(0); | |
std::atomic<int> n_bad(0); | |
auto prepare = [&counter, &n_bad, &tasks, ctx] () { | |
int num_tasks = tasks.size(); | |
int n_bad_local = 0; | |
while (true) { | |
int first = counter.fetch_add(K_TOKEN_CHUNK); | |
if (first >= num_tasks) { | |
if (n_bad_local > 0) n_bad += n_bad_local; | |
break; | |
} | |
int last = std::min(first + K_TOKEN_CHUNK, num_tasks); | |
for (int i = first; i < last; ++i) { | |
if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local; | |
} | |
} | |
}; | |
size_t max_thread = std::thread::hardware_concurrency(); | |
max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK); | |
std::vector<std::thread> workers(max_thread-1); | |
for (auto& w : workers) w = std::thread(prepare); | |
prepare(); | |
for (auto& w : workers) w.join(); | |
LOG("done\n"); | |
int nbad = n_bad; | |
if (nbad > 0) { | |
LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad); | |
return; | |
} | |
} else { | |
int n_dot = std::max((int) n_task/100, 1); | |
int i_task = 0; | |
for (auto& task : tasks) { | |
++i_task; | |
if (!multiple_choice_prepare_one_task(ctx, task, true)) { | |
return; | |
} | |
if (i_task%n_dot == 0) { | |
LOG("."); | |
} | |
} | |
LOG("done\n"); | |
} | |
LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size()); | |
LOG("\ntask\tacc_norm\n"); | |
const int n_ctx = llama_n_ctx(ctx); | |
const int n_batch = params.n_batch; | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
const int max_tasks_per_batch = 32; | |
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); | |
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); | |
std::vector<float> tok_logits(n_vocab); | |
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); | |
std::vector<std::pair<size_t, llama_token>> eval_pairs; | |
std::vector<float> eval_results; | |
std::vector<std::thread> workers(std::thread::hardware_concurrency()); | |
std::vector<int> batch_indeces; | |
int n_done = 0; | |
int n_correct = 0; | |
int n_tot_answers = 0; | |
for (size_t i0 = 0; i0 < tasks.size(); i0++) { | |
int n_cur = 0; | |
size_t i1 = i0; | |
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch | |
common_batch_clear(batch); | |
// batch as much tasks as possible into the available context | |
// each task has 4 unique sequence ids - one for each ending | |
// the common prefix is shared among the 4 sequences to save tokens | |
// we extract logits only from the last common token and from all ending tokens of each sequence | |
int s0 = 0; | |
while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) { | |
auto& cur_task = tasks[i1]; | |
int n_logits = 0; | |
int num_answers = cur_task.seq_tokens.size(); | |
if (s0 + num_answers > max_seq) { | |
break; | |
} | |
if (int(batch_indeces.size()) != num_answers) { | |
batch_indeces.resize(num_answers); | |
} | |
for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; | |
for (size_t i = 0; i < cur_task.common_prefix; ++i) { | |
//llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); | |
common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); | |
} | |
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix | |
n_logits += 1; | |
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { | |
const size_t seq_tokens_size = cur_task.seq_tokens[s].size(); | |
// TODO: don't evaluate the last token of each sequence | |
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) { | |
const bool needs_logits = i < seq_tokens_size - 1; | |
common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits); | |
n_logits += needs_logits; | |
} | |
} | |
s0 += num_answers; | |
cur_task.i_logits = i_logits; | |
i_logits += n_logits; | |
n_cur += cur_task.required_tokens; | |
if (++i1 == tasks.size()) { | |
break; | |
} | |
} | |
if (i0 == i1) { | |
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); | |
return; | |
} | |
llama_kv_cache_clear(ctx); | |
// decode all tasks [i0, i1) | |
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return; | |
} | |
// Compute log-probs in parallel | |
// First we collect all tasks | |
eval_pairs.clear(); | |
for (size_t i = i0; i < i1; ++i) { | |
auto& cur_task = tasks[i]; | |
size_t li = 1; // skip the last logit of the common prefix (computed separately below) | |
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { | |
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { | |
eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]); | |
} | |
} | |
} | |
// Then we do the actual calculation | |
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); | |
size_t ir = 0; | |
// compute the logprobs for each ending of the decoded tasks | |
for (size_t i = i0; i < i1; ++i) { | |
auto & cur_task = tasks[i]; | |
//LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str()); | |
//for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) { | |
// if (cur_task.mc1.labels[j] == 1) { | |
// LOG("%d", j+1); | |
// } | |
//} | |
//LOG("\n common_prefix: %zu\n", cur_task.common_prefix); | |
// get the logits of the last token of the common prefix | |
std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float)); | |
const auto first_probs = softmax(tok_logits); | |
cur_task.log_probs.resize(cur_task.seq_tokens.size()); | |
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { | |
size_t count = 1; | |
float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]); | |
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { | |
//LOG(" %zu %g\n", ir, eval_results[ir]); | |
++count; | |
log_prob += eval_results[ir++]; | |
} | |
cur_task.log_probs[s] = log_prob / count; | |
//LOG(" Final: %g\n", log_prob / count); | |
//LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count); | |
} | |
// Find the ending with maximum logprob | |
size_t logprob_max_idx = 0; | |
float logprob_max_val = cur_task.log_probs[0]; | |
for (size_t s = 1; s < cur_task.log_probs.size(); s++) { | |
if (cur_task.log_probs[s] > logprob_max_val) { | |
logprob_max_val = cur_task.log_probs[s]; | |
logprob_max_idx = s; | |
} | |
} | |
n_tot_answers += cur_task.log_probs.size(); | |
if (cur_task.mc1.labels[logprob_max_idx] == 1) { | |
++n_correct; | |
} | |
++n_done; | |
// Print the accumulated accuracy mean x 100 | |
LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done); | |
} | |
i0 = i1 - 1; | |
} | |
llama_batch_free(batch); | |
if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return; | |
float p = 1.f*n_correct/n_done; | |
float sigma = sqrt(p*(1-p)/(n_done-1)); | |
LOG("\n"); | |
LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); | |
p = 1.f*n_done/n_tot_answers; | |
sigma = sqrt(p*(1-p)/(n_done-1)); | |
LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); | |
LOG_INF("\n"); | |
} | |
static void kl_divergence(llama_context * ctx, const common_params & params) { | |
if (params.logits_file.empty()) { | |
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); | |
return; | |
} | |
std::ifstream in(params.logits_file.c_str(), std::ios::binary); | |
if (!in) { | |
LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str()); | |
return; | |
} | |
{ | |
char check[9]; check[8] = 0; | |
in.read(check, 8); | |
if (in.fail() || strncmp("_logits_", check, 8) != 0) { | |
LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); | |
return; | |
} | |
} | |
uint32_t n_ctx; | |
in.read((char *)&n_ctx, sizeof(n_ctx)); | |
if (n_ctx > llama_n_ctx(ctx)) { | |
LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n", | |
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx); | |
} | |
int n_vocab; | |
int n_chunk; | |
in.read((char *)&n_vocab, sizeof(n_vocab)); | |
in.read((char *)&n_chunk, sizeof(n_chunk)); | |
if (in.fail()) { | |
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); | |
return; | |
} | |
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { | |
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); | |
} | |
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk); | |
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { | |
LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); | |
return; | |
} | |
const int n_batch = params.n_batch; | |
const int num_batches = (n_ctx + n_batch - 1)/n_batch; | |
const int nv = 2*((n_vocab + 1)/2) + 4; | |
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); | |
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); | |
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); | |
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); | |
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); | |
std::vector<float> logits; | |
if (num_batches > 1) { | |
logits.reserve(size_t(n_ctx) * n_vocab); | |
} | |
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); | |
auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { | |
if (count < 1) { | |
return std::make_pair(0., 0.); | |
} | |
double f = sum/count; | |
double df = sum2/count - f*f; | |
df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; | |
return std::make_pair(f, df); | |
}; | |
auto covariance = [] (double suma, double sumb, double sumab, size_t count) { | |
if (count < 10) { | |
return 0.0; | |
} | |
double var = sumab/count - (suma/count)*(sumb/count); | |
var /= count - 1; | |
return var; | |
}; | |
kl_divergence_result kld; | |
auto kld_ptr = kld_values.data(); | |
auto p_diff_ptr = p_diff_values.data(); | |
for (int i = 0; i < n_chunk; ++i) { | |
const int start = i * n_ctx; | |
const int end = start + n_ctx; | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { | |
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i); | |
return; | |
} | |
// clear the KV cache | |
llama_kv_cache_clear(ctx); | |
llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
// save original token and restore it after eval | |
const auto token_org = tokens[batch_start]; | |
// add BOS token for the first batch of each chunk | |
if (add_bos && j == 0) { | |
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); | |
} | |
common_batch_clear(batch); | |
for (int i = 0; i < batch_size; i++) { | |
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); | |
} | |
if (llama_decode(ctx, batch)) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
llama_batch_free(batch); | |
return; | |
} | |
// restore the original token in case it was set to BOS | |
tokens[batch_start] = token_org; | |
if (num_batches > 1) { | |
const auto * batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab); | |
} | |
} | |
llama_batch_free(batch); | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
if (i == 0) { | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total * n_chunk); | |
if (total_seconds >= 60*60) { | |
LOG("%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
LOG("%.2f minutes\n", total_seconds / 60.0); | |
} | |
LOG("\n"); | |
LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n"); | |
const int first = n_ctx/2; | |
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); | |
process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, | |
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr); | |
p_diff_ptr += n_ctx - 1 - first; | |
kld_ptr += n_ctx - 1 - first; | |
LOG("%4d", i+1); | |
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); | |
const double ppl_val = exp(log_ppl.first); | |
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) | |
LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc); | |
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); | |
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); | |
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; | |
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); | |
LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc); | |
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); | |
LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second); | |
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); | |
const double p_diff_rms_val = sqrt(p_diff_mse.first); | |
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; | |
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); | |
double p_top_val = 1.*kld.n_same_top/kld.count; | |
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1)); | |
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc); | |
LOG("\n"); | |
logits.clear(); | |
} | |
LOG("\n"); | |
if (kld.count < 100) return; // we do not wish to do statistics on so few values | |
std::sort(kld_values.begin(), kld_values.end()); | |
std::sort(p_diff_values.begin(), p_diff_values.end()); | |
LOG("====== Perplexity statistics ======\n"); | |
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); | |
const double ppl_val = exp(log_ppl.first); | |
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) | |
LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc); | |
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); | |
const double ppl_base_val = exp(log_ppl_base.first); | |
const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 ) | |
LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc); | |
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); | |
// LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov); | |
const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second); | |
LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor); | |
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; | |
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); | |
LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc); | |
const double ppl_ratio_val = exp(log_ppl_ratio_val); | |
const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 ) | |
LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc); | |
const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov; | |
const double ppl_diff_val = ppl_val - ppl_base_val; | |
const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov); | |
LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc); | |
LOG("\n"); | |
LOG("====== KL divergence statistics ======\n"); | |
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); | |
LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second); | |
auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) | |
: kld_values[kld_values.size()/2]; | |
auto percentile = [] (std::vector<float> values, float fraction) { | |
if (fraction <= 0) return values.front(); | |
if (fraction >= 1) return values.back(); | |
float p = fraction*(values.size() - 1); | |
size_t ip = size_t(p); p -= ip; | |
return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)]; | |
}; | |
LOG("Maximum KLD: %10.6f\n", kld_values.back()); | |
LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f)); | |
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); | |
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); | |
LOG("Median KLD: %10.6f\n", kld_median); | |
LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f)); | |
LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f)); | |
LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f)); | |
LOG("Minimum KLD: %10.6f\n", kld_values.front()); | |
LOG("\n"); | |
LOG("====== Token probability statistics ======\n"); | |
auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count); | |
LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second); | |
auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1]) | |
: p_diff_values[p_diff_values.size()/2]; | |
LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back()); | |
LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f)); | |
LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f)); | |
LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f)); | |
LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f)); | |
LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f)); | |
LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median); | |
LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f)); | |
LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f)); | |
LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f)); | |
LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f)); | |
LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f)); | |
LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front()); | |
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); | |
// LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second); | |
const double p_diff_rms_val = sqrt(p_diff_mse.first); | |
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; | |
LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); | |
const double same_top_p = 1.0*kld.n_same_top/kld.count; | |
LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1))); | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
params.n_ctx = 512; | |
params.logits_all = true; | |
params.escape = false; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) { | |
return 1; | |
} | |
common_init(); | |
const int32_t n_ctx = params.n_ctx; | |
if (n_ctx <= 0) { | |
LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__); | |
return 1; | |
} | |
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence; | |
if (ppl) { | |
const int32_t n_seq = std::max(1, params.n_batch / n_ctx); | |
const int32_t n_kv = n_seq * n_ctx; | |
params.n_parallel = n_seq; | |
params.n_ctx = n_kv; | |
params.n_batch = std::min(params.n_batch, n_kv); | |
} else { | |
params.n_batch = std::min(params.n_batch, params.n_ctx); | |
if (params.kl_divergence) { | |
params.n_parallel = 1; | |
} else { | |
// ensure there's at least enough seq_ids for HellaSwag | |
params.n_parallel = std::max(4, params.n_parallel); | |
} | |
} | |
if (params.ppl_stride > 0) { | |
LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n", | |
params.n_ctx, params.n_ctx + params.ppl_stride/2); | |
params.n_ctx += params.ppl_stride/2; | |
} | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// load the model and apply lora adapter, if any | |
common_init_result llama_init = common_init_from_params(params); | |
llama_model * model = llama_init.model; | |
llama_context * ctx = llama_init.context; | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
if (params.n_ctx > n_ctx_train) { | |
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, params.n_ctx); | |
} | |
// print system information | |
{ | |
LOG_INF("\n"); | |
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); | |
} | |
struct results_perplexity results; | |
if (params.hellaswag) { | |
hellaswag_score(ctx, params); | |
} else if (params.winogrande) { | |
winogrande_score(ctx, params); | |
} else if (params.multiple_choice) { | |
multiple_choice_score(ctx, params); | |
} else if (params.kl_divergence) { | |
kl_divergence(ctx, params); | |
} else { | |
results = perplexity(ctx, params, n_ctx); | |
} | |
LOG("\n"); | |
llama_perf_context_print(ctx); | |
write_logfile(ctx, params, model, results); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |