Spaces:
Runtime error
Runtime error
// crash the server in debug mode, otherwise send an http 500 error | |
// increase max payload length to allow use of larger context size | |
// Change JSON_ASSERT from assert() to GGML_ASSERT: | |
using json = nlohmann::ordered_json; | |
using llama_tokens = std::vector<llama_token>; | |
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 | |
enum error_type { | |
ERROR_TYPE_INVALID_REQUEST, | |
ERROR_TYPE_AUTHENTICATION, | |
ERROR_TYPE_SERVER, | |
ERROR_TYPE_NOT_FOUND, | |
ERROR_TYPE_PERMISSION, | |
ERROR_TYPE_UNAVAILABLE, // custom error | |
ERROR_TYPE_NOT_SUPPORTED, // custom error | |
}; | |
template <typename T> | |
static T json_value(const json & body, const std::string & key, const T & default_value) { | |
// Fallback null to default value | |
if (body.contains(key) && !body.at(key).is_null()) { | |
try { | |
return body.at(key); | |
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { | |
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name()); | |
return default_value; | |
} | |
} else { | |
return default_value; | |
} | |
} | |
// | |
// tokenizer and input processing utils | |
// | |
static bool json_is_array_of_numbers(const json & data) { | |
if (data.is_array()) { | |
for (const auto & e : data) { | |
if (!e.is_number_integer()) { | |
return false; | |
} | |
} | |
return true; | |
} | |
return false; | |
} | |
// is array having BOTH numbers & strings? | |
static bool json_is_array_of_mixed_numbers_strings(const json & data) { | |
bool seen_string = false; | |
bool seen_number = false; | |
if (data.is_array()) { | |
for (const auto & e : data) { | |
seen_string |= e.is_string(); | |
seen_number |= e.is_number_integer(); | |
if (seen_number && seen_string) { | |
return true; | |
} | |
} | |
} | |
return false; | |
} | |
/** | |
* this handles 2 cases: | |
* - only string, example: "string" | |
* - mixed string and tokens, example: [12, 34, "string", 56, 78] | |
*/ | |
static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) { | |
// If `add_bos` is true, we only add BOS, when json_prompt is a string, | |
// or the first element of the json_prompt array is a string. | |
llama_tokens prompt_tokens; | |
if (json_prompt.is_array()) { | |
bool first = true; | |
for (const auto & p : json_prompt) { | |
if (p.is_string()) { | |
auto s = p.template get<std::string>(); | |
llama_tokens p; | |
if (first) { | |
p = common_tokenize(ctx, s, add_special, parse_special); | |
first = false; | |
} else { | |
p = common_tokenize(ctx, s, false, parse_special); | |
} | |
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); | |
} else { | |
if (first) { | |
first = false; | |
} | |
prompt_tokens.push_back(p.template get<llama_token>()); | |
} | |
} | |
} else { | |
auto s = json_prompt.template get<std::string>(); | |
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special); | |
} | |
return prompt_tokens; | |
} | |
/** | |
* break the input "prompt" object into multiple prompt if needed, then tokenize them | |
* this supports these cases: | |
* - "prompt": "string" | |
* - "prompt": [12, 34, 56] | |
* - "prompt": [12, 34, "string", 56, 78] | |
* and multiple prompts (multi-tasks): | |
* - "prompt": ["string1", "string2"] | |
* - "prompt": ["string1", [12, 34, 56]] | |
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] | |
*/ | |
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) { | |
std::vector<llama_tokens> result; | |
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { | |
// string or mixed | |
result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special)); | |
} else if (json_is_array_of_numbers(json_prompt)) { | |
// array of tokens | |
result.push_back(json_prompt.get<llama_tokens>()); | |
} else if (json_prompt.is_array()) { | |
// array of prompts | |
result.reserve(json_prompt.size()); | |
for (const auto & p : json_prompt) { | |
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { | |
result.push_back(tokenize_mixed(ctx, p, add_special, parse_special)); | |
} else if (json_is_array_of_numbers(p)) { | |
// array of tokens | |
result.push_back(p.get<llama_tokens>()); | |
} else { | |
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); | |
} | |
} | |
} else { | |
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); | |
} | |
return result; | |
} | |
// | |
// template utils | |
// | |
// format rerank task: [BOS]query[EOS][SEP]doc[EOS] | |
static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) { | |
llama_tokens result; | |
result.reserve(doc.size() + query.size() + 4); | |
result.push_back(llama_token_bos(model)); | |
result.insert(result.end(), query.begin(), query.end()); | |
result.push_back(llama_token_eos(model)); | |
result.push_back(llama_token_sep(model)); | |
result.insert(result.end(), doc.begin(), doc.end()); | |
result.push_back(llama_token_eos(model)); | |
return result; | |
} | |
// format infill task | |
static llama_tokens format_infill( | |
const llama_context * ctx, | |
const json & input_prefix, | |
const json & input_suffix, | |
const json & input_extra, | |
const int n_batch, | |
const int n_predict, | |
const int n_ctx, | |
const bool spm_infill, | |
const llama_tokens & tokens_prompt | |
) { | |
// TODO: optimize this block by reducing memory allocations and movement | |
// use FIM repo-level pattern: | |
// ref: https://arxiv.org/pdf/2409.12186 | |
// | |
// [FIM_REP]myproject | |
// [FIM_SEP]filename0 | |
// extra chunk 0 | |
// [FIM_SEP]filename1 | |
// extra chunk 1 | |
// ... | |
// [FIM_SEP]filename | |
// [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt | |
// | |
llama_tokens extra_tokens; | |
extra_tokens.reserve(n_ctx); | |
auto model = llama_get_model(ctx); | |
auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false); | |
auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false); | |
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) { | |
// TODO: make project name an input | |
static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false); | |
extra_tokens.push_back(llama_token_fim_rep(model)); | |
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); | |
} | |
for (const auto & chunk : input_extra) { | |
// { "text": string, "filename": string } | |
const std::string text = json_value(chunk, "text", std::string()); | |
const std::string filename = json_value(chunk, "filename", std::string("tmp")); | |
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) { | |
const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false); | |
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model)); | |
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); | |
} else { | |
// chunk separator in binary form to avoid confusing the AI | |
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; | |
static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false); | |
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); | |
} | |
const auto chunk_tokens = common_tokenize(ctx, text, false, false); | |
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); | |
} | |
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) { | |
// TODO: current filename | |
static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false); | |
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model)); | |
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); | |
} | |
// for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?) | |
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4)); | |
const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size()))); | |
SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); | |
// fill the rest of the context with extra chunks | |
const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); | |
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); | |
tokens_suffix.resize(n_suffix_take); | |
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model)); | |
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); | |
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model)); | |
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; | |
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; | |
if (llama_add_bos_token(model)) { | |
embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); | |
} | |
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); | |
// put the extra context before the FIM prefix | |
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); | |
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); | |
embd_inp.push_back(llama_token_fim_mid(model)); | |
return embd_inp; | |
} | |
// Format given chat. If tmpl is empty, we take the template from model metadata | |
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) { | |
std::vector<common_chat_msg> chat; | |
for (size_t i = 0; i < messages.size(); ++i) { | |
const auto & curr_msg = messages[i]; | |
std::string role = json_value(curr_msg, "role", std::string("")); | |
std::string content; | |
if (curr_msg.contains("content")) { | |
if (curr_msg["content"].is_string()) { | |
content = curr_msg["content"].get<std::string>(); | |
} else if (curr_msg["content"].is_array()) { | |
for (const auto & part : curr_msg["content"]) { | |
if (part.contains("text")) { | |
content += "\n" + part["text"].get<std::string>(); | |
} | |
} | |
} else { | |
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); | |
} | |
} else { | |
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); | |
} | |
chat.push_back({role, content}); | |
} | |
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true); | |
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str()); | |
return formatted_chat; | |
} | |
static std::string llama_get_chat_template(const struct llama_model * model) { | |
std::string template_key = "tokenizer.chat_template"; | |
// call with NULL buffer to get the total size of the string | |
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), NULL, 0); | |
if (res < 0) { | |
return ""; | |
} else { | |
std::vector<char> model_template(res, 0); | |
llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); | |
return std::string(model_template.data(), model_template.size()); | |
} | |
} | |
// | |
// base64 utils (TODO: move to common in the future) | |
// | |
static const std::string base64_chars = | |
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
"abcdefghijklmnopqrstuvwxyz" | |
"0123456789+/"; | |
static inline bool is_base64(uint8_t c) { | |
return (isalnum(c) || (c == '+') || (c == '/')); | |
} | |
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) { | |
int i = 0; | |
int j = 0; | |
int in_ = 0; | |
int in_len = encoded_string.size(); | |
uint8_t char_array_4[4]; | |
uint8_t char_array_3[3]; | |
std::vector<uint8_t> ret; | |
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { | |
char_array_4[i++] = encoded_string[in_]; in_++; | |
if (i == 4) { | |
for (i = 0; i < 4; i++) { | |
char_array_4[i] = base64_chars.find(char_array_4[i]); | |
} | |
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
for (i = 0; (i < 3); i++) { | |
ret.push_back(char_array_3[i]); | |
} | |
i = 0; | |
} | |
} | |
if (i) { | |
for (j = i; j < 4; j++) { | |
char_array_4[j] = 0; | |
} | |
for (j = 0; j < 4; j++) { | |
char_array_4[j] = base64_chars.find(char_array_4[j]); | |
} | |
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
for (j = 0; j < i - 1; j++) { | |
ret.push_back(char_array_3[j]); | |
} | |
} | |
return ret; | |
} | |
// | |
// random string / id | |
// | |
static std::string random_string() { | |
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); | |
std::random_device rd; | |
std::mt19937 generator(rd()); | |
std::string result(32, ' '); | |
for (int i = 0; i < 32; ++i) { | |
result[i] = str[generator() % str.size()]; | |
} | |
return result; | |
} | |
static std::string gen_chatcmplid() { | |
return "chatcmpl-" + random_string(); | |
} | |
// | |
// other common utils | |
// | |
static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) { | |
size_t i; | |
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} | |
return i; | |
} | |
static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) { | |
// check for empty sequences | |
if (a.empty() || b.empty()) { | |
return 0; | |
} | |
// get the lengths of the input sequences | |
size_t a_len = a.size(); | |
size_t b_len = b.size(); | |
// initialize the maximum length of the longest common subsequence (LCS) | |
size_t max_length = 0; | |
// use two rows instead of a 2D matrix to optimize space | |
std::vector<size_t> prev_row(b_len + 1, 0); | |
std::vector<size_t> curr_row(b_len + 1, 0); | |
// iterate through the elements of a | |
for (size_t i = 1; i <= a_len; i++) { | |
// iterate through the elements of b | |
for (size_t j = 1; j <= b_len; j++) { | |
// if elements at the current positions match | |
if (a[i - 1] == b[j - 1]) { | |
// if it's the first element of either sequences, set LCS length to 1 | |
if (i == 1 || j == 1) { | |
curr_row[j] = 1; | |
} else { | |
// increment LCS length by 1 compared to the previous element | |
curr_row[j] = prev_row[j - 1] + 1; | |
} | |
// update max_length if necessary | |
if (curr_row[j] > max_length) { | |
max_length = curr_row[j]; | |
} | |
} else { | |
// reset LCS length if elements don't match | |
curr_row[j] = 0; | |
} | |
} | |
// update the previous row for the next iteration | |
prev_row = curr_row; | |
} | |
// return the maximum length of the LCS | |
return max_length; | |
} | |
static bool ends_with(const std::string & str, const std::string & suffix) { | |
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
} | |
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { | |
if (!text.empty() && !stop.empty()) { | |
const char text_last_char = text.back(); | |
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { | |
if (stop[char_index] == text_last_char) { | |
const std::string current_partial = stop.substr(0, char_index + 1); | |
if (ends_with(text, current_partial)) { | |
return text.size() - char_index - 1; | |
} | |
} | |
} | |
} | |
return std::string::npos; | |
} | |
// TODO: reuse llama_detokenize | |
template <class Iter> | |
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { | |
std::string ret; | |
for (; begin != end; ++begin) { | |
ret += common_token_to_piece(ctx, *begin); | |
} | |
return ret; | |
} | |
// format incomplete utf-8 multibyte character for output | |
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { | |
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token); | |
// if the size is 1 and first bit is 1, meaning it's a partial character | |
// (size > 1 meaning it's already a known token) | |
if (out.size() == 1 && (out[0] & 0x80) == 0x80) { | |
std::stringstream ss; | |
ss << std::hex << (out[0] & 0xff); | |
std::string res(ss.str()); | |
out = "byte: \\x" + res; | |
} | |
return out; | |
} | |
struct completion_token_output { | |
llama_token tok; | |
std::string text_to_send; | |
struct token_prob { | |
llama_token tok; | |
float prob; | |
}; | |
std::vector<token_prob> probs; | |
}; | |
// convert a vector of completion_token_output to json | |
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) { | |
json out = json::array(); | |
for (const auto & prob : probs) { | |
json probs_for_token = json::array(); | |
for (const auto & p : prob.probs) { | |
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); | |
probs_for_token.push_back(json { | |
{"tok_str", tok_str}, | |
{"prob", p.prob}, | |
}); | |
} | |
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); | |
out.push_back(json { | |
{"content", tok_str}, | |
{"probs", probs_for_token}, | |
}); | |
} | |
return out; | |
} | |
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) { | |
const std::string str = | |
std::string(event) + ": " + | |
data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
"\n\n"; // note: these newlines are important (not sure why though, if you know, add a comment to explain) | |
LOG_DBG("data stream, to_send: %s", str.c_str()); | |
return sink.write(str.c_str(), str.size()); | |
} | |
// | |
// OAI utils | |
// | |
static json oaicompat_completion_params_parse( | |
const struct llama_model * model, | |
const json & body, /* openai api json semantics */ | |
const std::string & chat_template) { | |
json llama_params; | |
llama_params["__oaicompat"] = true; | |
// Apply chat template to the list of messages | |
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages")); | |
// Handle "stop" field | |
if (body.contains("stop") && body.at("stop").is_string()) { | |
llama_params["stop"] = json::array({body.at("stop").get<std::string>()}); | |
} else { | |
llama_params["stop"] = json_value(body, "stop", json::array()); | |
} | |
// Handle "response_format" field | |
if (body.contains("response_format")) { | |
json response_format = json_value(body, "response_format", json::object()); | |
std::string response_type = json_value(response_format, "type", std::string()); | |
if (response_type == "json_object") { | |
llama_params["json_schema"] = json_value(response_format, "schema", json::object()); | |
} else if (response_type == "json_schema") { | |
json json_schema = json_value(response_format, "json_schema", json::object()); | |
llama_params["json_schema"] = json_value(json_schema, "schema", json::object()); | |
} else if (!response_type.empty() && response_type != "text") { | |
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); | |
} | |
} | |
// Handle "n" field | |
int n_choices = json_value(body, "n", 1); | |
if (n_choices != 1) { | |
throw std::runtime_error("Only one completion choice is allowed"); | |
} | |
// Handle "logprobs" field | |
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future | |
if (json_value(body, "logprobs", false)) { | |
llama_params["n_probs"] = json_value(body, "top_logprobs", 20); | |
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { | |
throw std::runtime_error("top_logprobs requires logprobs to be set to true"); | |
} | |
// Params supported by OAI but unsupported by llama.cpp | |
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" }; | |
for (const auto & param : unsupported_params) { | |
if (body.contains(param)) { | |
throw std::runtime_error("Unsupported param: " + param); | |
} | |
} | |
// Copy remaining properties to llama_params | |
// This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint. | |
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp | |
for (const auto & item : body.items()) { | |
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" | |
if (!llama_params.contains(item.key()) || item.key() == "n_predict") { | |
llama_params[item.key()] = item.value(); | |
} | |
} | |
return llama_params; | |
} | |
static json format_final_response_oaicompat(const json & request, const json & result, const std::string & completion_id, bool streaming = false, bool verbose = false) { | |
bool stopped_word = result.count("stopped_word") != 0; | |
bool stopped_eos = json_value(result, "stopped_eos", false); | |
int num_tokens_predicted = json_value(result, "tokens_predicted", 0); | |
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); | |
std::string content = json_value(result, "content", std::string("")); | |
std::string finish_reason = "length"; | |
if (stopped_word || stopped_eos) { | |
finish_reason = "stop"; | |
} | |
json choices = | |
streaming ? json::array({json{{"finish_reason", finish_reason}, | |
{"index", 0}, | |
{"delta", json::object()}}}) | |
: json::array({json{{"finish_reason", finish_reason}, | |
{"index", 0}, | |
{"message", json{{"content", content}, | |
{"role", "assistant"}}}}}); | |
std::time_t t = std::time(0); | |
json res = json { | |
{"choices", choices}, | |
{"created", t}, | |
{"model", | |
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
{"object", streaming ? "chat.completion.chunk" : "chat.completion"}, | |
{"usage", json { | |
{"completion_tokens", num_tokens_predicted}, | |
{"prompt_tokens", num_prompt_tokens}, | |
{"total_tokens", num_tokens_predicted + num_prompt_tokens} | |
}}, | |
{"id", completion_id} | |
}; | |
// extra fields for debugging purposes | |
if (verbose) { | |
res["__verbose"] = result; | |
} | |
if (result.contains("completion_probabilities")) { | |
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array()); | |
} | |
return res; | |
} | |
// return value is vector as there is one case where we might need to generate two responses | |
static std::vector<json> format_partial_response_oaicompat(const json & result, const std::string & completion_id) { | |
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) { | |
return std::vector<json>({result}); | |
} | |
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; | |
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); | |
bool stopped_word = json_value(result, "stopped_word", false); | |
bool stopped_eos = json_value(result, "stopped_eos", false); | |
bool stopped_limit = json_value(result, "stopped_limit", false); | |
std::string content = json_value(result, "content", std::string("")); | |
std::string finish_reason; | |
if (stopped_word || stopped_eos) { | |
finish_reason = "stop"; | |
} | |
if (stopped_limit) { | |
finish_reason = "length"; | |
} | |
std::time_t t = std::time(0); | |
json choices; | |
if (!finish_reason.empty()) { | |
choices = json::array({json{{"finish_reason", finish_reason}, | |
{"index", 0}, | |
{"delta", json::object()}}}); | |
} else { | |
if (first) { | |
if (content.empty()) { | |
choices = json::array({json{{"finish_reason", nullptr}, | |
{"index", 0}, | |
{"delta", json{{"role", "assistant"}}}}}); | |
} else { | |
// We have to send this as two updates to conform to openai behavior | |
json initial_ret = json{{"choices", json::array({json{ | |
{"finish_reason", nullptr}, | |
{"index", 0}, | |
{"delta", json{ | |
{"role", "assistant"} | |
}}}})}, | |
{"created", t}, | |
{"id", completion_id}, | |
{"model", modelname}, | |
{"object", "chat.completion.chunk"}}; | |
json second_ret = json{ | |
{"choices", json::array({json{{"finish_reason", nullptr}, | |
{"index", 0}, | |
{"delta", json{ | |
{"content", content}}} | |
}})}, | |
{"created", t}, | |
{"id", completion_id}, | |
{"model", modelname}, | |
{"object", "chat.completion.chunk"}}; | |
return std::vector<json>({initial_ret, second_ret}); | |
} | |
} else { | |
// Some idiosyncrasy in task processing logic makes several trailing calls | |
// with empty content, we ignore these at the calee site. | |
if (content.empty()) { | |
return std::vector<json>({json::object()}); | |
} | |
choices = json::array({json{ | |
{"finish_reason", nullptr}, | |
{"index", 0}, | |
{"delta", | |
json{ | |
{"content", content}, | |
}}, | |
}}); | |
} | |
} | |
json ret = json { | |
{"choices", choices}, | |
{"created", t}, | |
{"id", completion_id}, | |
{"model", modelname}, | |
{"object", "chat.completion.chunk"} | |
}; | |
if (!finish_reason.empty()) { | |
int num_tokens_predicted = json_value(result, "tokens_predicted", 0); | |
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); | |
ret.push_back({"usage", json { | |
{"completion_tokens", num_tokens_predicted}, | |
{"prompt_tokens", num_prompt_tokens}, | |
{"total_tokens", num_tokens_predicted + num_prompt_tokens} | |
}}); | |
} | |
return std::vector<json>({ret}); | |
} | |
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { | |
json data = json::array(); | |
int i = 0; | |
for (const auto & elem : embeddings) { | |
data.push_back(json{ | |
{"embedding", json_value(elem, "embedding", json::array())}, | |
{"index", i++}, | |
{"object", "embedding"} | |
}); | |
} | |
json res = json { | |
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
{"object", "list"}, | |
{"usage", json { // TODO: fill | |
{"prompt_tokens", 0}, | |
{"total_tokens", 0} | |
}}, | |
{"data", data} | |
}; | |
return res; | |
} | |
static json format_response_rerank(const json & request, const json & ranks) { | |
json data = json::array(); | |
int i = 0; | |
for (const auto & rank : ranks) { | |
data.push_back(json{ | |
{"index", i++}, | |
{"relevance_score", json_value(rank, "score", 0.0)}, | |
}); | |
} | |
json res = json { | |
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
{"object", "list"}, | |
{"usage", json { // TODO: fill | |
{"prompt_tokens", 0}, | |
{"total_tokens", 0} | |
}}, | |
{"results", data} | |
}; | |
return res; | |
} | |
static bool is_valid_utf8(const std::string & str) { | |
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data()); | |
const unsigned char* end = bytes + str.length(); | |
while (bytes < end) { | |
if (*bytes <= 0x7F) { | |
// 1-byte sequence (0xxxxxxx) | |
bytes++; | |
} else if ((*bytes & 0xE0) == 0xC0) { | |
// 2-byte sequence (110xxxxx 10xxxxxx) | |
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) | |
return false; | |
bytes += 2; | |
} else if ((*bytes & 0xF0) == 0xE0) { | |
// 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx) | |
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) | |
return false; | |
bytes += 3; | |
} else if ((*bytes & 0xF8) == 0xF0) { | |
// 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx) | |
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || | |
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) | |
return false; | |
bytes += 4; | |
} else { | |
// Invalid UTF-8 lead byte | |
return false; | |
} | |
} | |
return true; | |
} | |
static json format_tokenizer_response(const json & tokens) { | |
return json { | |
{"tokens", tokens} | |
}; | |
} | |
static json format_detokenized_response(const std::string & content) { | |
return json { | |
{"content", content} | |
}; | |
} | |
static json format_error_response(const std::string & message, const enum error_type type) { | |
std::string type_str; | |
int code = 500; | |
switch (type) { | |
case ERROR_TYPE_INVALID_REQUEST: | |
type_str = "invalid_request_error"; | |
code = 400; | |
break; | |
case ERROR_TYPE_AUTHENTICATION: | |
type_str = "authentication_error"; | |
code = 401; | |
break; | |
case ERROR_TYPE_NOT_FOUND: | |
type_str = "not_found_error"; | |
code = 404; | |
break; | |
case ERROR_TYPE_SERVER: | |
type_str = "server_error"; | |
code = 500; | |
break; | |
case ERROR_TYPE_PERMISSION: | |
type_str = "permission_error"; | |
code = 403; | |
break; | |
case ERROR_TYPE_NOT_SUPPORTED: | |
type_str = "not_supported_error"; | |
code = 501; | |
break; | |
case ERROR_TYPE_UNAVAILABLE: | |
type_str = "unavailable_error"; | |
code = 503; | |
break; | |
} | |
return json { | |
{"code", code}, | |
{"message", message}, | |
{"type", type_str}, | |
}; | |
} | |