File size: 1,637 Bytes
8ef30c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b85cb8
8ef30c1
 
 
 
 
 
 
 
 
 
 
 
3b85cb8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np
import pickle

# Load the saved model
model = load_model("best_model.h5")

# Load the class labels from a pickle file
with open("mod_class_labels.pkl", "rb") as f:
    class_indices = pickle.load(f)

# Function to preprocess the image
def preprocess_image(image):
    image = load_img(image, target_size=(256, 256))  # Load the image with target size
    image = img_to_array(image)  # Convert the image to array
    image = np.expand_dims(image, axis=0)  # Expand dimensions to match the input shape
    image = image / 255.0  # Rescale the image
    return image

# Function to make a prediction and get the label
def predict_image(image):
    image = preprocess_image(image)
    prediction = model.predict(image)
    predicted_class = np.argmax(prediction, axis=1)[0]
    predicted_label = class_indices[predicted_class]
    return predicted_label

# Streamlit App
st.title("Rice Leaf Disease Classification")

st.write("Upload an image of a rice leaf and the model will predict its disease category.")

# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Display the uploaded image
    image = load_img(uploaded_file, target_size=(256, 256))
    st.image(image, caption='Uploaded Image', use_column_width=True)
    st.write("")
    st.write("Classifying...")

    # Make a prediction
    predicted_label = predict_image(uploaded_file)
    st.write(f"Predicted label: {predicted_label}")