import streamlit as st from transformers import pipeline # Load models # Distilled Sentiment Classifier # Link: https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student distilled_sentiment_classifier = pipeline( model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=True ) # Emotion Classifier # Link: https://huggingface.co/SamLowe/roberta-base-go_emotions emotion_text_classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions") # Named Entity Recognition # Link: https://huggingface.co/mdarhri00/named-entity-recognition named_entity_classifier = pipeline("token-classification", model="mdarhri00/named-entity-recognition") # Toxicity Classifier # Link: https://huggingface.co/s-nlp/roberta_toxicity_classifier toxicity_classifier = pipeline("text-classification", model="s-nlp/roberta_toxicity_classifier") # Streamlit app def main(): st.title("HuggingFace Model Demo App") # User input for text user_text = st.text_area("Enter some text:") if user_text: # Available Models analysis_type = st.selectbox("Select Analysis Type", ["", "Sentiment Analysis", "Emotion Analysis", "Named Entity Recognition", "Toxicity Analysis"]) # Run custom and display outputs st.header("Function Output:") if analysis_type == "Sentiment Analysis": st.subheader("Sentiment Analysis:") for labels_and_scores in data: for entry in labels_and_scores: label = entry["label"] score = entry["score"] st.write(f"Label: {label}, Score: {score}") # Find the label with the highest score max_score_entry = max(data, key=lambda x: x['score']) max_score_label = max_score_entry['label'] max_score = max_score_entry['score'] # Display the label with the highest score st.write(f"Label with the highest score: {max_score_label}, Highest Score: {max_score}") if analysis_type == "Emotion Analysis": st.subheader("Emotion Analysis:") # Parse JSON data data = emotion_text_classifier(user_text) # Extract and display label and score for each entry for entry in data: label = entry["label"] score = entry["score"] st.write(f"Label: {label}, Score: {score}") if analysis_type == "Named Entity Recognition": st.subheader("Named Entity Recognition:") # Parse JSON data data = named_entity_classifier(user_text) st.write(data) # Extract and display data for labels in data: for entry in labels: entity_group = entry["entity_group"] score = entry["score"] word = entry["word"] start = entry["start"] end = entry["end"] st.write(f"Word: {word}, Entity Group: {entity_group}, Score: {score}, Start: {start}, End: {end}") if analysis_type == "Toxicity Analysis": st.subheader("Toxicity Analysis:") # Parse JSON data data = toxicity_classifier(user_text) #st.write(data) # Extract and display label and score values for entry in data: label = entry["label"] score = entry["score"] st.write(f"Label: {label}, Score: {score}") if __name__ == "__main__": main()