Darpan07's picture
Update app.py
60f64c5 verified
raw
history blame
6.53 kB
# importing necessary libraries
import os
import time
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
# load the environment variables into the python script
load_dotenv()
# fetching the openai_api_key environment variable
openai_api_key = os.getenv('OPENAI_API_KEY')
# Initialize session states
if 'vectorDB' not in st.session_state:
st.session_state.vectorDB = None
if "messages" not in st.session_state:
st.session_state.messages = []
if 'bot_name' not in st.session_state:
st.session_state.bot_name = ''
if 'chain' not in st.session_state:
st.session_state.chain = None
def get_pdf_text(pdf) -> str:
""" This function extracts the text from the PDF file """
text = ""
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_vectorstore(text_chunks):
""" This function will create a vector database as well as create and store the embedding of the text chunks into the VectorDB """
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_text_chunks(text: str):
""" This function will split the text into the smaller chunks"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_text(text)
return chunks
def processing(pdf):
"""This function divides the PDF into smaller chunks and saves these segmented chunks in a vector database. And return the Vector Database"""
# getting all the raw text from the PDF
raw_text = get_pdf_text(pdf)
# divinding the raw text into smaller chunks
text_chunks = get_text_chunks(raw_text)
# Creating and storing the chunks in vector database
vectorDB = get_vectorstore(text_chunks)
return vectorDB
def get_response(query: str) -> str:
# getting the context from the database that is similar to the user query
query_context = st.session_state.vectorDB.similarity_search(query=query,k=3)
# calling the chain to get the output from the LLM
response = st.session_state.chain.invoke({'human_input':query,'context':query_context,'name':st.session_state.bot_name})['text']
# Iterate through each word in the 'response' string after splitting it based on whitespace
for word in response.split():
# Yield the current word followed by a space, effectively creating a generator
yield word + " "
# Pause execution for 0.05 seconds (50 milliseconds) to introduce a delay
time.sleep(0.05)
def get_conversation_chain(vectorDB):
# using OPENAI LLM
llm = OpenAI(temperature=0.3)
# creating a template to pass into LLM
template = """You are a Personalized ChatBot with a name: {name} for a company's customer support system, aiming to enhance the customer experience by providing tailored assistance and information. You are interacting with customer.
Answer the question as detailed as possible and to the point from the context: {context}\n , and make sure to provide all the information, if the answer is not in the provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
{chat_history}
Human: {human_input}
AI: """
# creating a prompt that is used to format the input of the user
prompt = PromptTemplate(template = template,input_variables=['chat_history','human_input','name','context'])
# creating a memory that will store the chat history between chatbot and user
memory = ConversationBufferWindowMemory(memory_key='chat_history',input_key="human_input",k=5)
chain = LLMChain(llm=llm,prompt=prompt,memory=memory,verbose=True)
return chain
if __name__ =='__main__':
#setting the config of WebPage
st.set_page_config(page_title="Personalized ChatBot",page_icon="πŸ€–")
st.header('Personalized Customer Support Chatbot πŸ€–',divider='rainbow')
# taking input( bot name and pdf file) from the user
with st.sidebar:
st.caption('Please enter the **Bot Name** and Upload **PDF** File!')
bot_name = st.text_input(label='Bot Name',placeholder='Enter the bot name here....',key="bot_name")
file = st.file_uploader("Upload a PDF file!",type='pdf')
# moving forward only when both the inputs are given by the user
if file and bot_name:
# the Process File button will process the pdf file and save the chunks into the vector database
if st.button('Process File'):
# if there is existing chat history we will delete it
if st.session_state.messages != []:
st.session_state.messages = []
with st.spinner('Processing.....'):
st.session_state['vectorDB'] = processing(file)
st.session_state['chain'] = get_conversation_chain(st.session_state['vectorDB'])
st.write('File Processed')
# if the vector database is ready to use then only show the chatbot interface
if st.session_state.vectorDB:
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# taking the input i.e. query from the user (walrun operator)
if prompt := st.chat_input(f"Message {st.session_state.bot_name}"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.write(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
response = st.write_stream(get_response(prompt))
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})