Darshan-BugendaiTech's picture
Update app.py
c9a6a17
raw
history blame
2.6 kB
# Importing Necessary Libraries
import gradio as gr
from llama_index import download_loader, ServiceContext, VectorStoreIndex
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import Prompt
import torch
device = torch.device("cpu")
# Loading the Zephyr Model using Llama CPP
from llama_index.llms import LlamaCPP
llm = LlamaCPP(
model_url='https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/resolve/main/zephyr-7b-beta.Q5_K_M.gguf?download=true',
model_path=None,
temperature=0.3,
max_new_tokens=2000,
context_window=3900,
# set to at least 1 to use GPU
model_kwargs={"n_gpu_layers": 0},
verbose=True
)
# Loading Embedding Model
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
# Defining custom Prompt
TEMPLATE_STR = (
'''You are an helpful and responsible AI assistant who is excited to help user but will never harm humans or engage in the activity that causes harm to anyone. Given with the context below help user with the query.
{context}
<|user|>\n
{query_str}\n
<|assistant|>\n'''
)
QA_TEMPLATE = Prompt(TEMPLATE_STR)
# User Interface functions
def build_the_bot(file):
global service_context, index
if file is not None:
# Loading Data
PandasExcelReader = download_loader("PandasExcelReader")
loader = PandasExcelReader(pandas_config={"header": 0})
documents = loader.load_data(file=file)
service_context = ServiceContext.from_defaults(
chunk_size=150,chunk_overlap=10,
llm=llm,embed_model=embed_model,
)
index = VectorStoreIndex.from_documents(documents, service_context=service_context,text_qa_template=QA_TEMPLATE)
return('Index saved successfull!!!')
def chat(chat_history, user_input):
global service_context, index
query_engine = index.as_query_engine(streaming=False)
bot_response = query_engine.query(user_input)
bot_response = str(bot_response)
return chat_history + [(user_input, bot_response)]
# User Interface
with gr.Blocks() as demo:
gr.Markdown('# Marketing Email Generator')
with gr.Tab("Input Text Document"):
upload = gr.File(label="Upload Your Excel")
upload.upload(fn=build_the_bot,inputs=[upload],show_progress='full')
with gr.Tab("Knowledge Bot"):
chatbot = gr.Chatbot()
message = gr.Textbox ()
submit_button = gr.Button("Submit")
submit_button.click(chat, [chatbot, message], chatbot)
message.submit(chat, [chatbot, message], chatbot)
demo.queue().launch(debug = True,share=True)