import gradio as gr from happytransformer import HappyGeneration happy_gen = HappyGeneration("GPT2", "DarwinAnim8or/GPT-Greentext-1.5b") from happytransformer import GENSettings def generate(text, length=100, penalty=3, temperature=0.8): args_top_k = GENSettings(no_repeat_ngram_size=penalty, do_sample=True, top_k=80, temperature=temperature, max_length=length, early_stopping=False) inputText = "Write a greentext from 4chan.org. The story should be like a bullet-point list using > as the start of each line. It must be funny and have a twist near the end.\n" inputText += ">" + text + "\n>" print(inputText) result = happy_gen.generate_text(inputText, args=args_top_k) generated_text = result.text #returns generated text only #replace \n with actual newlines: generated_text = generated_text.replace('\\n', '\n') #clean up formatting: generated_text = generated_text.replace('>', '\n>') generated_text = generated_text.replace('\\"', "\"") generated_text = ">" + text + "\n>" + generated_text #include our prompt in our response (partially) return generated_text examples = [ ["be me"], ["be going to heaven"], #["be going to work"], #["be baking a pie"], #["come home after another tiring day"], ["be a plague doctor"] ] demo = gr.Interface( fn=generate, inputs=[ gr.inputs.Textbox(lines=5, label="Input Text"), gr.inputs.Slider(5, 200, label='Length', default=100, step=5), gr.inputs.Slider(1, 10, label='no repeat ngram size', default=2, step=1), gr.inputs.Slider(0.0, 1.0, label='Temperature - control randomness', default=0.6, step=0.1) ], outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples, title="GPT-Greentext Playground", description="Using the 1.5b size model. You may need to run it a few times in order to get something good!" ) demo.launch()