import torch import transformers import gradio as gr from transformers import AutoModelForCausalLM, GPT2Tokenizer model_name = "DarwinAnim8or/GPT-NoSleep-v2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Handle padding if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id def generate_story(prompt, max_length=200): """Generates a story continuation from a given prompt.""" input_ids = tokenizer.encode(prompt, return_tensors="pt") # Set generation parameters (adjust for creativity) output = model.generate( input_ids, max_length=max_length, num_return_sequences=1, # Generate a single story no_repeat_ngram_size=2, # Prevent repetitive phrases do_sample=True, top_k=50, top_p=0.95, temperature=0.8, # Control randomness (higher = more creative) ) # Decode the generated story story = tokenizer.decode(output[0], skip_special_tokens=True) return story # Gradio Interface with gr.Blocks() as demo: gr.Markdown("## Storyteller: Generate a story from a prompt!") prompt_input = gr.Textbox(label="Enter your story prompt:") story_output = gr.Textbox(label="Generated story:") max_length_slider = gr.Slider(minimum=50, maximum=500, value=200, step=10, label="Max Story Length") generate_button = gr.Button("Generate Story") # Event handling generate_button.click( fn=generate_story, inputs=[prompt_input, max_length_slider], outputs=story_output ) # Launch the demo (customize the sharing options if desired) demo.launch()