create database utils
Browse files- create_database.py +72 -0
create_database.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langchain.document_loaders import DirectoryLoader
|
2 |
+
from langchain_community.document_loaders import DirectoryLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.schema import Document
|
5 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
import openai
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
import logging
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Load environment variables. Assumes that project contains .env file with API keys
|
17 |
+
load_dotenv()
|
18 |
+
#---- Set OpenAI API key
|
19 |
+
# Change environment variable name from "OPENAI_API_KEY" to the name given in
|
20 |
+
# your .env file.
|
21 |
+
|
22 |
+
CHROMA_PATH = "chroma"
|
23 |
+
DATA_PATH = "data/"
|
24 |
+
|
25 |
+
|
26 |
+
def main():
|
27 |
+
generate_data_store()
|
28 |
+
|
29 |
+
|
30 |
+
def generate_data_store():
|
31 |
+
logger.info("Loading documents..")
|
32 |
+
documents = load_documents()
|
33 |
+
chunks = split_text(documents)
|
34 |
+
save_to_chroma(chunks)
|
35 |
+
|
36 |
+
|
37 |
+
def load_documents():
|
38 |
+
loader = DirectoryLoader(DATA_PATH, glob="*.pdf")
|
39 |
+
documents = loader.load()
|
40 |
+
logger.info("Found {:d} documents..".format(len(documents)))
|
41 |
+
|
42 |
+
return documents
|
43 |
+
|
44 |
+
|
45 |
+
def split_text(documents: list[Document]):
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
47 |
+
chunk_size=1800,
|
48 |
+
chunk_overlap=100,
|
49 |
+
length_function=len,
|
50 |
+
add_start_index=True,
|
51 |
+
)
|
52 |
+
chunks = text_splitter.split_documents(documents)
|
53 |
+
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
54 |
+
|
55 |
+
document = chunks[10]
|
56 |
+
print(document.page_content)
|
57 |
+
print(document.metadata)
|
58 |
+
|
59 |
+
return chunks
|
60 |
+
|
61 |
+
|
62 |
+
def save_to_chroma(chunks: list[Document]):
|
63 |
+
# Clear out the database first.
|
64 |
+
if os.path.exists(CHROMA_PATH):
|
65 |
+
shutil.rmtree(CHROMA_PATH)
|
66 |
+
|
67 |
+
# Create a new DB from the documents.
|
68 |
+
db = Chroma.from_documents(
|
69 |
+
chunks, HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"), persist_directory=CHROMA_PATH
|
70 |
+
)
|
71 |
+
db.persist()
|
72 |
+
print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")
|