# Inspired from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization/blob/main/app.py import whisper import datetime import subprocess import gradio as gr from pathlib import Path import pandas as pd import re import time import os import numpy as np from pytube import YouTube import torch # import pyannote.audio # from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding # from pyannote.audio import Audio # from pyannote.core import Segment # from sklearn.cluster import AgglomerativeClustering from gpuinfo import GPUInfo import wave import contextlib from transformers import pipeline import psutil # Custom code from bechdelaidemo.utils import download_youtube_video from bechdelaidemo.utils import extract_audio_from_movie # Constants whisper_models = ["tiny.en","base.en","tiny","base", "small", "medium", "large"] device = 0 if torch.cuda.is_available() else "cpu" os.makedirs('output', exist_ok=True) # Prepare embedding model # embedding_model = PretrainedSpeakerEmbedding( # "speechbrain/spkrec-ecapa-voxceleb", # device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) def get_youtube(video_url): yt = YouTube(video_url) abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() print("Success download video") print(abs_video_path) return abs_video_path def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def speech_to_text(video_filepath, selected_source_lang = "en", whisper_model = "tiny.en"): """ # Transcribe youtube link using OpenAI Whisper 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. 2. Generating speaker embeddings for each segments. 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio """ time_start = time.time() # Convert video to audio audio_filepath = extract_audio_from_movie(video_filepath,".wav") # Load whisper model = whisper.load_model(whisper_model) # Get duration with contextlib.closing(wave.open(audio_filepath,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) print(f"conversion to wav ready, duration of audio file: {duration}") # Transcribe audio options = dict(language=selected_source_lang, beam_size=5, best_of=5) transcribe_options = dict(task="transcribe", **options) result = model.transcribe(audio_filepath, **transcribe_options) segments = result["segments"] text = result["text"].strip() print("starting whisper done with whisper") return [text] source_language_list = ["en","fr"] # ---- Gradio Layout ----- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles video_in = gr.Video(label="Video file", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="tiny.en", label="Selected Whisper model", interactive=True) # transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') output_text = gr.Textbox(label = "Transcribed text",lines = 10) title = "BechdelAI - demo" demo = gr.Blocks(title=title,live = True) demo.encrypt = False with demo: with gr.Tab("BechdelAI - dialogue demo"): gr.Markdown('''

BechdelAI - Dialogue demo

#
''') with gr.Row(): gr.Markdown(''' ### Transcribe youtube link using OpenAI Whisper ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. ##### 2. Generating speaker embeddings for each segments. ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. ''') with gr.Row(): with gr.Column(): # gr.Markdown('''### You can test by following examples:''') examples = gr.Examples(examples= [ "https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s", "https://www.youtube.com/watch?v=-UX0X45sYe4", "https://www.youtube.com/watch?v=7minSgqi-Gw"], label="Examples", inputs=[youtube_url_in]) with gr.Column(): youtube_url_in.render() download_youtube_btn = gr.Button("Download Youtube video") download_youtube_btn.click(get_youtube, [youtube_url_in], [ video_in]) print(video_in) with gr.Column(): youtube_url_in.render() download_youtube_btn = gr.Button("Download Youtube video") download_youtube_btn.click(get_youtube, [youtube_url_in], [ video_in]) print(video_in) with gr.Column(): video_in.render() with gr.Row(): with gr.Column(): with gr.Column(): gr.Markdown(''' ##### Here you can start the transcription process. ##### Please select the source language for transcription. ##### You should select a number of speakers for getting better results. ''') selected_source_lang.render() selected_whisper_model.render() transcribe_btn = gr.Button("Transcribe audio and diarization") transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], [output_text]) # with gr.Row(): # gr.Markdown(''' # ##### Here you will get transcription output # ##### ''') with gr.Row(): with gr.Column(): output_text.render() demo.launch(debug=True)