import datetime import os import pathlib import requests import zipfile import pandas as pd import pydeck as pdk import geopandas as gpd import streamlit as st import leafmap.colormaps as cm from leafmap.common import hex_to_rgb import time from infer import USPPPMModel, USPPPMDataset import torch import pandas as pd @st.cache_resource def load_model(): model = USPPPMModel('microsoft/deberta-v3-small') model.load_state_dict(torch.load('model_weights.pth', map_location=torch.device('cpu'))) model.eval() ds = USPPPMDataset(model.tokenizer, 133) return model, ds def infer(anchor, target, title): model, ds = load_model() d = { 'anchor': anchor, 'target': target, 'title': title, 'label': 0 } x = ds[d][0] with torch.no_grad(): y = model(x) return y.cpu().numpy()[0][0] @st.cache_data def get_context(): df = pd.read_csv('./fold-0-train.csv') l = list(set(list(df['title'].values))) return l st.set_page_config( page_title="PatentMatch", page_icon="🧊", layout="centered", initial_sidebar_state="expanded", ) # fix sidebar st.markdown(""" """, unsafe_allow_html=True ) hide_st_style = """ """ st.markdown(hide_st_style, unsafe_allow_html=True) def app(): st.title("PatentMatch: Patent Semantic Similarity Matcher") #st.markdown("[![View in W&B](https://img.shields.io/badge/View%20in-W%26B-blue)](https://wandb.ai//?workspace=user-)") st.markdown( """This project is focused on developing a Transformer based NLP model to match phrases in U.S. patents based on their semantic similarity within a specific technical domain context. The trained model achieved Pearson correlation coefficient score of 0.745. [[Source Code]](https://github.com/dataraptor/PatentMatch) """ ) st.markdown('---') # st.selectbox("Select from example", # [ # "Example 1", # "Example 2", # ]) row1_col1, row1_col2, row1_col3 = st.columns( [0.5, 0.4, 0.4] ) # with row1_col1: # frequency = st.selectbox("Section", # [ # "A: Human Necessities", # "B: Operations and Transport", # "C: Chemistry and Metallurgy", # "D: Textiles", # "E: Fixed Constructions", # "F: Mechanical Engineering", # "G: Physics", # "H: Electricity", # "Y: Emerging Cross-Sectional Technologies", # ]) # with row1_col2: # class_box = st.selectbox("Class", # [ # "21", # "14", # "23", # ]) with row1_col1: l = get_context() context = st.selectbox("Context", l, l.index('basic electric elements')) with row1_col2: anchor = st.text_input("Anchor", "deflect light") with row1_col3: target = st.text_input("Target", "bending moment") if st.button("Predict Scores", type="primary"): with st.spinner("Predicting scores..."): score = infer(anchor, target, context) ss = st.success("Scores predicted successfully!") score += 2.0 fmt = "{:<.3f}".format(score) st.subheader(f"Similarity Score: {fmt}") app() # Display a footer with links and credits st.markdown("---") st.markdown("Built by [Shamim Ahamed](https://www.shamimahamed.com/). Data provided by [Kaggle](https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching)") #st.markdown("Data provided by [The Feedback Prize - ELLIPSE Corpus Scoring Challenge on Kaggle](https://www.kaggle.com/c/feedbackprize-ellipse-corpus-scoring-challenge)")