Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
import streamlit as st | |
import pandas as pd | |
from pmdarima import auto_arima | |
import matplotlib.pyplot as plt | |
# Title of the Streamlit app | |
st.title('Auto ARIMA Time Series Analysis') | |
# Upload CSV data | |
uploaded_file = st.file_uploader("Choose a CSV file", type='csv') | |
if uploaded_file is not None: | |
# Read the uploaded CSV file with pandas | |
df = pd.read_csv(uploaded_file) | |
# Convert timestamp column to datetime format and set it as index | |
df['timestamp'] = pd.to_datetime(df['timestamp']) | |
df.set_index('timestamp', inplace=True) | |
# Perform Auto ARIMA analysis on value column | |
model = auto_arima(df['value'], trace=True, error_action='ignore', suppress_warnings=True) | |
# Fit the model and get predictions for next 10 periods | |
model.fit(df['value']) | |
predictions = model.predict(n_periods=10) | |
# Display model summary in Streamlit app | |
st.write(model.summary()) | |
# Create a plot with Matplotlib and display it in Streamlit app | |
fig, ax = plt.subplots() | |
ax.plot(df.index, df['value'], label='Original') | |
prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:] | |
ax.plot(prediction_index, predictions, label='Predicted') | |
plt.title('Value vs Timestamp') | |
plt.legend() | |
st.pyplot(fig) | |