ARIMA_test / app.py
hhalim's picture
Update app.py
bdb6cf7
# Import necessary libraries
import streamlit as st
import pandas as pd
from pmdarima import auto_arima
import matplotlib.pyplot as plt
# Title of the Streamlit app
st.title('Auto ARIMA Time Series Analysis')
# Upload CSV data
uploaded_file = st.file_uploader("Choose a CSV file", type='csv')
if uploaded_file is not None:
# Read the uploaded CSV file with pandas
df = pd.read_csv(uploaded_file)
# Convert timestamp column to datetime format and set it as index
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index('timestamp', inplace=True)
# Perform Auto ARIMA analysis on value column
model = auto_arima(df['value'], trace=True, error_action='ignore', suppress_warnings=True)
# Fit the model and get predictions for next 10 periods
model.fit(df['value'])
predictions = model.predict(n_periods=10)
# Display model summary in Streamlit app
st.write(model.summary())
# Create a plot with Matplotlib and display it in Streamlit app
fig, ax = plt.subplots()
ax.plot(df.index, df['value'], label='Original')
prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:]
ax.plot(prediction_index, predictions, label='Predicted')
plt.title('Value vs Timestamp')
plt.legend()
st.pyplot(fig)
# Create a plot with Matplotlib and display it in Streamlit app
fig2, ax2 = plt.subplots()
ax2.plot(df.index, df['value'], label='Original')
prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:]
# ax2.plot(prediction_index, predictions, label='Predicted')
plt.title('Value vs Timestamp original only')
plt.legend()
st.pyplot(fig2)