# Import necessary libraries import streamlit as st import pandas as pd from pmdarima import auto_arima import matplotlib.pyplot as plt # Title of the Streamlit app st.title('Auto ARIMA Time Series Analysis') # Upload CSV data uploaded_file = st.file_uploader("Choose a CSV file", type='csv') if uploaded_file is not None: # Read the uploaded CSV file with pandas df = pd.read_csv(uploaded_file) # Convert timestamp column to datetime format and set it as index df['timestamp'] = pd.to_datetime(df['timestamp']) df.set_index('timestamp', inplace=True) # Perform Auto ARIMA analysis on value column model = auto_arima(df['value'], trace=True, error_action='ignore', suppress_warnings=True) # Fit the model and get predictions for next 10 periods model.fit(df['value']) predictions = model.predict(n_periods=10) # Display model summary in Streamlit app st.write(model.summary()) # Create a plot with Matplotlib and display it in Streamlit app fig, ax = plt.subplots() ax.plot(df.index, df['value'], label='Original') prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:] ax.plot(prediction_index, predictions, label='Predicted') plt.title('Value vs Timestamp') plt.legend() st.pyplot(fig) # Create a plot with Matplotlib and display it in Streamlit app fig2, ax2 = plt.subplots() ax2.plot(df.index, df['value'], label='Original') prediction_index = pd.date_range(start=df.index[-1], periods=11)[1:] # ax2.plot(prediction_index, predictions, label='Predicted') plt.title('Value vs Timestamp original only') plt.legend() st.pyplot(fig2)