Datasculptor's picture
Update app.py
6a1a254
import tensorflow as tf
import pandas as pd
import gradio as gr
authors_df = pd.read_csv('authors.csv')
labels = sorted(list(authors_df.name))
model = tf.keras.models.load_model('efficientnetb0.h5')
description = 'This is a DEMO that attempts to recognize the inspirations used by the AI art generator. After uploading a picture of an image, the application displays the predicted artist along with the probability of predicting the top three authors.The DEMO uses EfficientNetB0 convolutional neural network as a base model whose classifier was modified and trained the 8,000+ paintings from [Kaggle](https://www.kaggle.com/datasets/ikarus777/best-artworks-of-all-time) dataset. Model trained by osydorchuk89. Given the dataset limitations, the model only recognizes paintings of [50 artists](https://huggingface.co/spaces/osydorchuk/painting_authors/blob/main/authors.csv).'
def predict_author(input):
if input is None:
return 'Please upload an image'
input = input.reshape((-1, 224, 224, 3))
prediction = model.predict(input).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(50)}
return confidences
demo = gr.Interface(
title='the AI art generator sources of inspiration',
description=description,
fn=predict_author,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(num_top_classes=3),
examples=['test_pics/eva_miro.jpg', 'test_pics/eva_bosch.jpg', 'test_pics/eva_miro_2.jpg', 'test_pics/eva_rtology.jpg']
)
demo.launch()