Spaces:
Sleeping
Sleeping
Commit
•
08fabf7
1
Parent(s):
f79ba24
feat: add docling support
Browse files- app.py +72 -19
- demo.py +8 -0
- requirements.in +4 -2
- requirements.txt +6 -438
app.py
CHANGED
@@ -2,12 +2,24 @@ import logging
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import gradio as gr
|
|
|
5 |
from datasets import Dataset
|
6 |
from gradio_log import Log
|
7 |
from huggingface_hub import DatasetCard
|
8 |
-
from llama_index.core import SimpleDirectoryReader
|
9 |
from llama_index.core.node_parser import SentenceSplitter
|
|
|
10 |
from llama_index.core.schema import MetadataMode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from tqdm.auto import tqdm
|
12 |
|
13 |
log_file = "logs.txt"
|
@@ -22,8 +34,40 @@ def load_corpus(
|
|
22 |
):
|
23 |
if verbose:
|
24 |
gr.Info("Loading files...")
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if split_sentences is False:
|
28 |
gr.Info(
|
29 |
"Skipping sentence splitting. Each file will be a single row in the dataset."
|
@@ -61,7 +105,10 @@ def upload_and_preview(
|
|
61 |
split_sentences: bool = True,
|
62 |
):
|
63 |
print("loading files")
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
print("parsing into sentences")
|
67 |
corpus = load_corpus(
|
@@ -159,17 +206,18 @@ def update_dataset_card(
|
|
159 |
description = """Corpus Creator is a tool for transforming a collection of text files into a Hugging Face dataset, perfect for various natural language processing (NLP) tasks. Whether you're preparing data for synthetic generation, building pipelines, or setting up annotation tasks, this app simplifies the process.
|
160 |
|
161 |
Key features:
|
162 |
-
-
|
163 |
- ✂️ Customizable text chunking
|
164 |
- 👁️ Instant dataset preview
|
165 |
-
- 🚀 One-click upload to Hugging Face
|
166 |
|
167 |
-
#### Powered by Llama Index
|
168 |
|
169 |
-
Corpus Creator leverages the power of Llama Index, a data framework for LLM-based applications. Specifically, we use Llama Index's `SentenceSplitter` class to intelligently chunk your text. This ensures that your dataset is split in a way that preserves semantic meaning, making it ideal for downstream NLP tasks. [Learn more about Llama Index](https://www.llamaindex.ai/)
|
170 |
|
|
|
171 |
|
172 |
-
Get started by uploading your files and see your corpus take shape!
|
173 |
|
174 |
[View an example dataset](https://huggingface.co/datasets/davanstrien/MOH-Bethnal-Green) created with Corpus Creator.
|
175 |
"""
|
@@ -189,14 +237,19 @@ with gr.Blocks() as demo:
|
|
189 |
gr.Markdown(
|
190 |
"### 1. Upload Files\nClick 'Upload Files' to select text file(s). A preview will generate automatically"
|
191 |
)
|
192 |
-
with gr.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
200 |
gr.Markdown("""
|
201 |
### 2. Adjust Parameters for Chunking Text (Optional)
|
202 |
Customize the chunk size, overlap, and sentence splitting option according to your requirements.
|
@@ -238,8 +291,8 @@ with gr.Blocks() as demo:
|
|
238 |
with gr.Accordion("detailed logs", open=False):
|
239 |
Log(log_file, dark=True, xterm_font_size=12)
|
240 |
|
241 |
-
|
242 |
-
|
243 |
inputs=[upload_button, chunk_size, chunk_overlap, split_sentences],
|
244 |
outputs=[state, corpus_preview_df, preview_summary],
|
245 |
)
|
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
from datasets import Dataset
|
7 |
from gradio_log import Log
|
8 |
from huggingface_hub import DatasetCard
|
|
|
9 |
from llama_index.core.node_parser import SentenceSplitter
|
10 |
+
from llama_index.core.readers import SimpleDirectoryReader
|
11 |
from llama_index.core.schema import MetadataMode
|
12 |
+
from llama_index.readers.docling import DoclingReader
|
13 |
+
from llama_index.readers.file import (
|
14 |
+
EpubReader,
|
15 |
+
HWPReader,
|
16 |
+
ImageReader,
|
17 |
+
IPYNBReader,
|
18 |
+
MboxReader,
|
19 |
+
PandasCSVReader,
|
20 |
+
PandasExcelReader,
|
21 |
+
VideoAudioReader,
|
22 |
+
)
|
23 |
from tqdm.auto import tqdm
|
24 |
|
25 |
log_file = "logs.txt"
|
|
|
34 |
):
|
35 |
if verbose:
|
36 |
gr.Info("Loading files...")
|
37 |
+
|
38 |
+
docling_reader = DoclingReader()
|
39 |
+
try:
|
40 |
+
docs = []
|
41 |
+
for file in files:
|
42 |
+
docs.extend(docling_reader.load_data(file))
|
43 |
+
except Exception:
|
44 |
+
reader = SimpleDirectoryReader(
|
45 |
+
input_files=files,
|
46 |
+
file_extractor={
|
47 |
+
".hwp": HWPReader,
|
48 |
+
".pdf": docling_reader,
|
49 |
+
".docx": docling_reader,
|
50 |
+
".pptx": docling_reader,
|
51 |
+
".ppt": docling_reader,
|
52 |
+
".pptm": docling_reader,
|
53 |
+
".gif": ImageReader,
|
54 |
+
".jpg": ImageReader,
|
55 |
+
".png": ImageReader,
|
56 |
+
".jpeg": ImageReader,
|
57 |
+
".webp": ImageReader,
|
58 |
+
".mp3": VideoAudioReader,
|
59 |
+
".mp4": VideoAudioReader,
|
60 |
+
".csv": PandasCSVReader,
|
61 |
+
".epub": EpubReader,
|
62 |
+
".md": docling_reader,
|
63 |
+
".mbox": MboxReader,
|
64 |
+
".ipynb": IPYNBReader,
|
65 |
+
".xls": PandasExcelReader,
|
66 |
+
".xlsx": PandasExcelReader,
|
67 |
+
},
|
68 |
+
)
|
69 |
+
docs = reader.load_data()
|
70 |
+
|
71 |
if split_sentences is False:
|
72 |
gr.Info(
|
73 |
"Skipping sentence splitting. Each file will be a single row in the dataset."
|
|
|
105 |
split_sentences: bool = True,
|
106 |
):
|
107 |
print("loading files")
|
108 |
+
if isinstance(files, pd.DataFrame):
|
109 |
+
file_paths = files["urls"].tolist()
|
110 |
+
else:
|
111 |
+
file_paths = [file.name for file in files]
|
112 |
|
113 |
print("parsing into sentences")
|
114 |
corpus = load_corpus(
|
|
|
206 |
description = """Corpus Creator is a tool for transforming a collection of text files into a Hugging Face dataset, perfect for various natural language processing (NLP) tasks. Whether you're preparing data for synthetic generation, building pipelines, or setting up annotation tasks, this app simplifies the process.
|
207 |
|
208 |
Key features:
|
209 |
+
- 🗂️ Reads popular document formats (PDF, DOCX, PPTX, HTML, AsciiDoc, Markdown)
|
210 |
- ✂️ Customizable text chunking
|
211 |
- 👁️ Instant dataset preview
|
212 |
+
- 🚀 One-click upload to Hugging Face Hub
|
213 |
|
214 |
+
#### Powered by Llama Index and Docling
|
215 |
|
216 |
+
Corpus Creator leverages the power of Llama Index, a data framework for LLM-based applications. Specifically, we use Llama Index's `SentenceSplitter` class to intelligently chunk your text. This ensures that your dataset is split in a way that preserves semantic meaning, making it ideal for downstream NLP tasks. [Learn more about Llama Index](https://www.llamaindex.ai/).
|
217 |
|
218 |
+
Docling is a tool for converting documents to text. It supports a wide range of document formats, including PDF, DOCX, PPTX, Images, HTML, AsciiDoc, and Markdown. [Learn more about Docling](https://ds4sd.github.io/docling/).
|
219 |
|
220 |
+
Get started by uploading your files and see your corpus take shape!
|
221 |
|
222 |
[View an example dataset](https://huggingface.co/datasets/davanstrien/MOH-Bethnal-Green) created with Corpus Creator.
|
223 |
"""
|
|
|
237 |
gr.Markdown(
|
238 |
"### 1. Upload Files\nClick 'Upload Files' to select text file(s). A preview will generate automatically"
|
239 |
)
|
240 |
+
with gr.Tab():
|
241 |
+
with gr.Row():
|
242 |
+
upload_button = gr.File(
|
243 |
+
file_types=["text"],
|
244 |
+
file_count="multiple",
|
245 |
+
height=50,
|
246 |
+
interactive=True,
|
247 |
+
label="Upload Files",
|
248 |
+
)
|
249 |
+
with gr.Tab():
|
250 |
+
with gr.Row():
|
251 |
+
urls = gr.Dataframe(label="URL", headers=["urls"], interactive=True)
|
252 |
+
upload_button_files = gr.Button("Upload URLs")
|
253 |
gr.Markdown("""
|
254 |
### 2. Adjust Parameters for Chunking Text (Optional)
|
255 |
Customize the chunk size, overlap, and sentence splitting option according to your requirements.
|
|
|
291 |
with gr.Accordion("detailed logs", open=False):
|
292 |
Log(log_file, dark=True, xterm_font_size=12)
|
293 |
|
294 |
+
gr.on(
|
295 |
+
triggers=[upload_button.upload, upload_button_files.click],
|
296 |
inputs=[upload_button, chunk_size, chunk_overlap, split_sentences],
|
297 |
outputs=[state, corpus_preview_df, preview_summary],
|
298 |
)
|
demo.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from docling.document_converter import DocumentConverter
|
2 |
+
|
3 |
+
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
|
4 |
+
converter = DocumentConverter()
|
5 |
+
result = converter.convert(source)
|
6 |
+
print(
|
7 |
+
result.document.export_to_markdown()
|
8 |
+
) # output: "### Docling Technical Report[...]"
|
requirements.in
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
datasets
|
2 |
-
gradio[oauth]
|
3 |
gradio_log
|
4 |
-
llama_index
|
|
|
|
|
|
1 |
datasets
|
2 |
+
gradio[oauth]<5
|
3 |
gradio_log
|
4 |
+
llama_index==0.11.22
|
5 |
+
docling
|
6 |
+
llama-index-readers-docling
|
requirements.txt
CHANGED
@@ -1,438 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
# datasets
|
8 |
-
# fsspec
|
9 |
-
# llama-index-core
|
10 |
-
# llama-index-legacy
|
11 |
-
aiosignal==1.3.1
|
12 |
-
# via aiohttp
|
13 |
-
altair==5.3.0
|
14 |
-
# via gradio
|
15 |
-
annotated-types==0.7.0
|
16 |
-
# via pydantic
|
17 |
-
anyio==4.4.0
|
18 |
-
# via
|
19 |
-
# httpx
|
20 |
-
# openai
|
21 |
-
# starlette
|
22 |
-
# watchfiles
|
23 |
-
attrs==23.2.0
|
24 |
-
# via
|
25 |
-
# aiohttp
|
26 |
-
# jsonschema
|
27 |
-
# referencing
|
28 |
-
authlib==1.3.1
|
29 |
-
# via gradio
|
30 |
-
beautifulsoup4==4.12.3
|
31 |
-
# via llama-index-readers-file
|
32 |
-
certifi==2024.6.2
|
33 |
-
# via
|
34 |
-
# httpcore
|
35 |
-
# httpx
|
36 |
-
# requests
|
37 |
-
cffi==1.16.0
|
38 |
-
# via cryptography
|
39 |
-
charset-normalizer==3.3.2
|
40 |
-
# via requests
|
41 |
-
click==8.1.7
|
42 |
-
# via
|
43 |
-
# nltk
|
44 |
-
# typer
|
45 |
-
# uvicorn
|
46 |
-
contourpy==1.2.1
|
47 |
-
# via matplotlib
|
48 |
-
cryptography==42.0.8
|
49 |
-
# via authlib
|
50 |
-
cycler==0.12.1
|
51 |
-
# via matplotlib
|
52 |
-
dataclasses-json==0.6.7
|
53 |
-
# via
|
54 |
-
# llama-index-core
|
55 |
-
# llama-index-legacy
|
56 |
-
datasets==2.20.0
|
57 |
-
# via -r requirements.in
|
58 |
-
deprecated==1.2.14
|
59 |
-
# via
|
60 |
-
# llama-index-core
|
61 |
-
# llama-index-legacy
|
62 |
-
dill==0.3.8
|
63 |
-
# via
|
64 |
-
# datasets
|
65 |
-
# multiprocess
|
66 |
-
dirtyjson==1.0.8
|
67 |
-
# via
|
68 |
-
# llama-index-core
|
69 |
-
# llama-index-legacy
|
70 |
-
distro==1.9.0
|
71 |
-
# via openai
|
72 |
-
dnspython==2.6.1
|
73 |
-
# via email-validator
|
74 |
-
email-validator==2.1.2
|
75 |
-
# via fastapi
|
76 |
-
fastapi==0.111.0
|
77 |
-
# via gradio
|
78 |
-
fastapi-cli==0.0.4
|
79 |
-
# via fastapi
|
80 |
-
ffmpy==0.3.2
|
81 |
-
# via gradio
|
82 |
-
filelock==3.15.1
|
83 |
-
# via
|
84 |
-
# datasets
|
85 |
-
# huggingface-hub
|
86 |
-
fonttools==4.53.0
|
87 |
-
# via matplotlib
|
88 |
-
frozenlist==1.4.1
|
89 |
-
# via
|
90 |
-
# aiohttp
|
91 |
-
# aiosignal
|
92 |
-
fsspec==2024.5.0
|
93 |
-
# via
|
94 |
-
# datasets
|
95 |
-
# gradio-client
|
96 |
-
# huggingface-hub
|
97 |
-
# llama-index-core
|
98 |
-
# llama-index-legacy
|
99 |
-
gradio==4.36.1
|
100 |
-
# via
|
101 |
-
# -r requirements.in
|
102 |
-
# gradio-log
|
103 |
-
gradio-client==1.0.1
|
104 |
-
# via gradio
|
105 |
-
gradio-log==0.0.4
|
106 |
-
# via -r requirements.in
|
107 |
-
greenlet==3.0.3
|
108 |
-
# via sqlalchemy
|
109 |
-
h11==0.14.0
|
110 |
-
# via
|
111 |
-
# httpcore
|
112 |
-
# uvicorn
|
113 |
-
httpcore==1.0.5
|
114 |
-
# via httpx
|
115 |
-
httptools==0.6.1
|
116 |
-
# via uvicorn
|
117 |
-
httpx==0.27.0
|
118 |
-
# via
|
119 |
-
# fastapi
|
120 |
-
# gradio
|
121 |
-
# gradio-client
|
122 |
-
# llama-index-core
|
123 |
-
# llama-index-legacy
|
124 |
-
# llamaindex-py-client
|
125 |
-
# openai
|
126 |
-
huggingface-hub==0.23.4
|
127 |
-
# via
|
128 |
-
# datasets
|
129 |
-
# gradio
|
130 |
-
# gradio-client
|
131 |
-
idna==3.7
|
132 |
-
# via
|
133 |
-
# anyio
|
134 |
-
# email-validator
|
135 |
-
# httpx
|
136 |
-
# requests
|
137 |
-
# yarl
|
138 |
-
importlib-resources==6.4.0
|
139 |
-
# via gradio
|
140 |
-
itsdangerous==2.2.0
|
141 |
-
# via gradio
|
142 |
-
jinja2==3.1.4
|
143 |
-
# via
|
144 |
-
# altair
|
145 |
-
# fastapi
|
146 |
-
# gradio
|
147 |
-
joblib==1.4.2
|
148 |
-
# via nltk
|
149 |
-
jsonschema==4.22.0
|
150 |
-
# via altair
|
151 |
-
jsonschema-specifications==2023.12.1
|
152 |
-
# via jsonschema
|
153 |
-
kiwisolver==1.4.5
|
154 |
-
# via matplotlib
|
155 |
-
llama-index==0.10.45
|
156 |
-
# via -r requirements.in
|
157 |
-
llama-index-agent-openai==0.2.7
|
158 |
-
# via
|
159 |
-
# llama-index
|
160 |
-
# llama-index-program-openai
|
161 |
-
llama-index-cli==0.1.12
|
162 |
-
# via llama-index
|
163 |
-
llama-index-core==0.10.44
|
164 |
-
# via
|
165 |
-
# llama-index
|
166 |
-
# llama-index-agent-openai
|
167 |
-
# llama-index-cli
|
168 |
-
# llama-index-embeddings-openai
|
169 |
-
# llama-index-indices-managed-llama-cloud
|
170 |
-
# llama-index-llms-openai
|
171 |
-
# llama-index-multi-modal-llms-openai
|
172 |
-
# llama-index-program-openai
|
173 |
-
# llama-index-question-gen-openai
|
174 |
-
# llama-index-readers-file
|
175 |
-
# llama-index-readers-llama-parse
|
176 |
-
# llama-parse
|
177 |
-
llama-index-embeddings-openai==0.1.10
|
178 |
-
# via
|
179 |
-
# llama-index
|
180 |
-
# llama-index-cli
|
181 |
-
llama-index-indices-managed-llama-cloud==0.1.6
|
182 |
-
# via llama-index
|
183 |
-
llama-index-legacy==0.9.48
|
184 |
-
# via llama-index
|
185 |
-
llama-index-llms-openai==0.1.22
|
186 |
-
# via
|
187 |
-
# llama-index
|
188 |
-
# llama-index-agent-openai
|
189 |
-
# llama-index-cli
|
190 |
-
# llama-index-multi-modal-llms-openai
|
191 |
-
# llama-index-program-openai
|
192 |
-
# llama-index-question-gen-openai
|
193 |
-
llama-index-multi-modal-llms-openai==0.1.6
|
194 |
-
# via llama-index
|
195 |
-
llama-index-program-openai==0.1.6
|
196 |
-
# via
|
197 |
-
# llama-index
|
198 |
-
# llama-index-question-gen-openai
|
199 |
-
llama-index-question-gen-openai==0.1.3
|
200 |
-
# via llama-index
|
201 |
-
llama-index-readers-file==0.1.25
|
202 |
-
# via llama-index
|
203 |
-
llama-index-readers-llama-parse==0.1.4
|
204 |
-
# via llama-index
|
205 |
-
llama-parse==0.4.4
|
206 |
-
# via llama-index-readers-llama-parse
|
207 |
-
llamaindex-py-client==0.1.19
|
208 |
-
# via
|
209 |
-
# llama-index-core
|
210 |
-
# llama-index-indices-managed-llama-cloud
|
211 |
-
markdown-it-py==3.0.0
|
212 |
-
# via rich
|
213 |
-
markupsafe==2.1.5
|
214 |
-
# via
|
215 |
-
# gradio
|
216 |
-
# jinja2
|
217 |
-
marshmallow==3.21.3
|
218 |
-
# via dataclasses-json
|
219 |
-
matplotlib==3.9.0
|
220 |
-
# via gradio
|
221 |
-
mdurl==0.1.2
|
222 |
-
# via markdown-it-py
|
223 |
-
multidict==6.0.5
|
224 |
-
# via
|
225 |
-
# aiohttp
|
226 |
-
# yarl
|
227 |
-
multiprocess==0.70.16
|
228 |
-
# via datasets
|
229 |
-
mypy-extensions==1.0.0
|
230 |
-
# via typing-inspect
|
231 |
-
nest-asyncio==1.6.0
|
232 |
-
# via
|
233 |
-
# llama-index-core
|
234 |
-
# llama-index-legacy
|
235 |
-
networkx==3.3
|
236 |
-
# via
|
237 |
-
# llama-index-core
|
238 |
-
# llama-index-legacy
|
239 |
-
nltk==3.8.1
|
240 |
-
# via
|
241 |
-
# llama-index-core
|
242 |
-
# llama-index-legacy
|
243 |
-
numpy==2.0.0
|
244 |
-
# via
|
245 |
-
# altair
|
246 |
-
# contourpy
|
247 |
-
# datasets
|
248 |
-
# gradio
|
249 |
-
# llama-index-core
|
250 |
-
# llama-index-legacy
|
251 |
-
# matplotlib
|
252 |
-
# pandas
|
253 |
-
# pyarrow
|
254 |
-
openai==1.34.0
|
255 |
-
# via
|
256 |
-
# llama-index-agent-openai
|
257 |
-
# llama-index-core
|
258 |
-
# llama-index-legacy
|
259 |
-
orjson==3.10.5
|
260 |
-
# via
|
261 |
-
# fastapi
|
262 |
-
# gradio
|
263 |
-
packaging==24.1
|
264 |
-
# via
|
265 |
-
# altair
|
266 |
-
# datasets
|
267 |
-
# gradio
|
268 |
-
# gradio-client
|
269 |
-
# huggingface-hub
|
270 |
-
# marshmallow
|
271 |
-
# matplotlib
|
272 |
-
pandas==2.2.2
|
273 |
-
# via
|
274 |
-
# altair
|
275 |
-
# datasets
|
276 |
-
# gradio
|
277 |
-
# llama-index-core
|
278 |
-
# llama-index-legacy
|
279 |
-
pillow==10.3.0
|
280 |
-
# via
|
281 |
-
# gradio
|
282 |
-
# llama-index-core
|
283 |
-
# matplotlib
|
284 |
-
pyarrow==16.1.0
|
285 |
-
# via datasets
|
286 |
-
pyarrow-hotfix==0.6
|
287 |
-
# via datasets
|
288 |
-
pycparser==2.22
|
289 |
-
# via cffi
|
290 |
-
pydantic==2.7.4
|
291 |
-
# via
|
292 |
-
# fastapi
|
293 |
-
# gradio
|
294 |
-
# llamaindex-py-client
|
295 |
-
# openai
|
296 |
-
pydantic-core==2.18.4
|
297 |
-
# via pydantic
|
298 |
-
pydub==0.25.1
|
299 |
-
# via gradio
|
300 |
-
pygments==2.18.0
|
301 |
-
# via rich
|
302 |
-
pyparsing==3.1.2
|
303 |
-
# via matplotlib
|
304 |
-
pypdf==4.2.0
|
305 |
-
# via llama-index-readers-file
|
306 |
-
python-dateutil==2.9.0.post0
|
307 |
-
# via
|
308 |
-
# matplotlib
|
309 |
-
# pandas
|
310 |
-
python-dotenv==1.0.1
|
311 |
-
# via uvicorn
|
312 |
-
python-multipart==0.0.9
|
313 |
-
# via
|
314 |
-
# fastapi
|
315 |
-
# gradio
|
316 |
-
pytz==2024.1
|
317 |
-
# via pandas
|
318 |
-
pyyaml==6.0.1
|
319 |
-
# via
|
320 |
-
# datasets
|
321 |
-
# gradio
|
322 |
-
# huggingface-hub
|
323 |
-
# llama-index-core
|
324 |
-
# uvicorn
|
325 |
-
referencing==0.35.1
|
326 |
-
# via
|
327 |
-
# jsonschema
|
328 |
-
# jsonschema-specifications
|
329 |
-
regex==2024.5.15
|
330 |
-
# via
|
331 |
-
# nltk
|
332 |
-
# tiktoken
|
333 |
-
requests==2.32.3
|
334 |
-
# via
|
335 |
-
# datasets
|
336 |
-
# huggingface-hub
|
337 |
-
# llama-index-core
|
338 |
-
# llama-index-legacy
|
339 |
-
# tiktoken
|
340 |
-
rich==13.7.1
|
341 |
-
# via typer
|
342 |
-
rpds-py==0.18.1
|
343 |
-
# via
|
344 |
-
# jsonschema
|
345 |
-
# referencing
|
346 |
-
ruff==0.4.9
|
347 |
-
# via gradio
|
348 |
-
semantic-version==2.10.0
|
349 |
-
# via gradio
|
350 |
-
shellingham==1.5.4
|
351 |
-
# via typer
|
352 |
-
six==1.16.0
|
353 |
-
# via python-dateutil
|
354 |
-
sniffio==1.3.1
|
355 |
-
# via
|
356 |
-
# anyio
|
357 |
-
# httpx
|
358 |
-
# openai
|
359 |
-
soupsieve==2.5
|
360 |
-
# via beautifulsoup4
|
361 |
-
sqlalchemy==2.0.30
|
362 |
-
# via
|
363 |
-
# llama-index-core
|
364 |
-
# llama-index-legacy
|
365 |
-
starlette==0.37.2
|
366 |
-
# via fastapi
|
367 |
-
striprtf==0.0.26
|
368 |
-
# via llama-index-readers-file
|
369 |
-
tenacity==8.4.1
|
370 |
-
# via
|
371 |
-
# llama-index-core
|
372 |
-
# llama-index-legacy
|
373 |
-
tiktoken==0.7.0
|
374 |
-
# via
|
375 |
-
# llama-index-core
|
376 |
-
# llama-index-legacy
|
377 |
-
tomlkit==0.12.0
|
378 |
-
# via gradio
|
379 |
-
toolz==0.12.1
|
380 |
-
# via altair
|
381 |
-
tqdm==4.66.4
|
382 |
-
# via
|
383 |
-
# datasets
|
384 |
-
# huggingface-hub
|
385 |
-
# llama-index-core
|
386 |
-
# nltk
|
387 |
-
# openai
|
388 |
-
typer==0.12.3
|
389 |
-
# via
|
390 |
-
# fastapi-cli
|
391 |
-
# gradio
|
392 |
-
typing-extensions==4.12.2
|
393 |
-
# via
|
394 |
-
# fastapi
|
395 |
-
# gradio
|
396 |
-
# gradio-client
|
397 |
-
# huggingface-hub
|
398 |
-
# llama-index-core
|
399 |
-
# llama-index-legacy
|
400 |
-
# openai
|
401 |
-
# pydantic
|
402 |
-
# pydantic-core
|
403 |
-
# sqlalchemy
|
404 |
-
# typer
|
405 |
-
# typing-inspect
|
406 |
-
typing-inspect==0.9.0
|
407 |
-
# via
|
408 |
-
# dataclasses-json
|
409 |
-
# llama-index-core
|
410 |
-
# llama-index-legacy
|
411 |
-
tzdata==2024.1
|
412 |
-
# via pandas
|
413 |
-
ujson==5.10.0
|
414 |
-
# via fastapi
|
415 |
-
urllib3==2.2.2
|
416 |
-
# via
|
417 |
-
# gradio
|
418 |
-
# requests
|
419 |
-
uvicorn==0.30.1
|
420 |
-
# via
|
421 |
-
# fastapi
|
422 |
-
# gradio
|
423 |
-
uvloop==0.19.0
|
424 |
-
# via uvicorn
|
425 |
-
watchfiles==0.22.0
|
426 |
-
# via uvicorn
|
427 |
-
websockets==11.0.3
|
428 |
-
# via
|
429 |
-
# gradio-client
|
430 |
-
# uvicorn
|
431 |
-
wrapt==1.16.0
|
432 |
-
# via
|
433 |
-
# deprecated
|
434 |
-
# llama-index-core
|
435 |
-
xxhash==3.4.1
|
436 |
-
# via datasets
|
437 |
-
yarl==1.9.4
|
438 |
-
# via aiohttp
|
|
|
1 |
+
datasets
|
2 |
+
gradio[oauth]<5
|
3 |
+
gradio_log
|
4 |
+
llama_index==0.11.22
|
5 |
+
docling
|
6 |
+
llama-index-readers-docling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|