import logging from pathlib import Path import gradio as gr import pandas as pd from datasets import Dataset from gradio_log import Log from huggingface_hub import DatasetCard from llama_index.core.node_parser import SentenceSplitter from llama_index.core.readers import SimpleDirectoryReader from llama_index.core.schema import MetadataMode from llama_index.readers.docling import DoclingReader from llama_index.readers.file import ( EpubReader, HWPReader, ImageReader, IPYNBReader, MboxReader, PandasCSVReader, PandasExcelReader, VideoAudioReader, ) from tqdm.auto import tqdm log_file = "logs.txt" Path(log_file).touch(exist_ok=True) logging.basicConfig(filename="logs.txt", level=logging.INFO) logging.getLogger().addHandler(logging.FileHandler(log_file)) def load_corpus( files, chunk_size=256, chunk_overlap=0, verbose=True, split_sentences=True ): if verbose: gr.Info("Loading files...") docling_reader = DoclingReader() try: docs = [] for file in files: docs.extend(docling_reader.load_data(file)) except Exception: reader = SimpleDirectoryReader( input_files=files, file_extractor={ ".hwp": HWPReader, ".pdf": docling_reader, ".docx": docling_reader, ".pptx": docling_reader, ".ppt": docling_reader, ".pptm": docling_reader, ".gif": ImageReader, ".jpg": ImageReader, ".png": ImageReader, ".jpeg": ImageReader, ".webp": ImageReader, ".mp3": VideoAudioReader, ".mp4": VideoAudioReader, ".csv": PandasCSVReader, ".epub": EpubReader, ".md": docling_reader, ".mbox": MboxReader, ".ipynb": IPYNBReader, ".xls": PandasExcelReader, ".xlsx": PandasExcelReader, }, ) docs = reader.load_data() if split_sentences is False: gr.Info( "Skipping sentence splitting. Each file will be a single row in the dataset." ) return {doc.id_: doc.text for doc in docs} if split_sentences: return split_corpus(verbose, docs, chunk_size, chunk_overlap) def split_corpus(verbose, docs, chunk_size, chunk_overlap): if verbose: gr.Info(f"Loaded {len(docs)} docs") parser = SentenceSplitter.from_defaults( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) nodes = parser.get_nodes_from_documents(docs, show_progress=verbose) if verbose: gr.Info(f"Parsed {len(nodes)} nodes") docs = { node.node_id: node.get_content(metadata_mode=MetadataMode.NONE) for node in tqdm(nodes) } # remove empty docs docs = {k: v for k, v in docs.items() if v} return docs def upload_and_preview( files, chunk_size: int = 256, chunk_overlap: int = 0, split_sentences: bool = True, ): print("loading files") if isinstance(files, pd.DataFrame): file_paths = files["urls"].tolist() else: file_paths = [file.name for file in files] print("parsing into sentences") corpus = load_corpus( file_paths, chunk_size=chunk_size, chunk_overlap=chunk_overlap, split_sentences=split_sentences, ) gr.Info("Creating dataset") dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()}) message = f"Files uploaded and dataset preview created:\n - {len(dataset)} rows" state = { "file_paths": file_paths, "dataset": dataset, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, } return state, dataset.to_pandas(), message def preview_dataset( state, chunk_size: int = 256, chunk_overlap: int = 0, split_sentences: bool = True, ): if not state.get("file_paths"): raise gr.Error("Please upload files first.") print("parsing into sentences") corpus = load_corpus( state["file_paths"], chunk_size=chunk_size, chunk_overlap=chunk_overlap, split_sentences=split_sentences, ) print("Creating dataset") dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()}) message = f"Dataset preview updated:\n - {len(dataset)} rows" state["dataset"] = dataset state["chunk_size"] = chunk_size state["chunk_overlap"] = chunk_overlap return state, dataset.to_pandas(), message def upload_to_hub( state, hub_id: str = None, private: bool = False, oauth_token: gr.OAuthToken = None, ): if not state.get("dataset"): raise gr.Error("Please preview the dataset first.") dataset = state["dataset"] chunk_size = state["chunk_size"] chunk_overlap = state["chunk_overlap"] message = f"Dataset has: \n - {len(dataset)} rows" if hub_id: if oauth_token is not None: gr.Info("Uploading dataset to the Hugging Face Hub...") dataset.push_to_hub(hub_id, token=oauth_token.token, private=private) update_dataset_card(hub_id, oauth_token.token, chunk_size, chunk_overlap) message += ( f"\n\nUploaded to [{hub_id}](https://huggingface.co/datasets/{hub_id})" ) else: raise gr.Error("Please login to Hugging Face Hub to push to hub") return message def update_dataset_card( hub_id, token, chunk_size, chunk_overlap, ): card = DatasetCard.load(hub_id, token=token) if not card.text: # add template description to card text card.text += f"""This dataset was created using [Corpus Creator](https://huggingface.co/spaces/davanstrien/corpus-creator). This dataset was created by parsing a corpus of text files into chunks of sentences using Llama Index. This processing was done with a chunk size of {chunk_size} and a chunk overlap of {chunk_overlap}.""" tags = card.data.get("tags", []) tags.append("corpus-creator") card.data["tags"] = tags card.push_to_hub(hub_id, token=token) description = """Corpus Creator is a tool for transforming a collection of text files into a Hugging Face dataset, perfect for various natural language processing (NLP) tasks. Whether you're preparing data for synthetic generation, building pipelines, or setting up annotation tasks, this app simplifies the process. Key features: - 🗂️ Reads popular document formats (PDF, DOCX, PPTX, HTML, AsciiDoc, Markdown) - ✂️ Customizable text chunking - 👁️ Instant dataset preview - 🚀 One-click upload to Hugging Face Hub #### Powered by Llama Index and Docling Corpus Creator leverages the power of Llama Index, a data framework for LLM-based applications. Specifically, we use Llama Index's `SentenceSplitter` class to intelligently chunk your text. This ensures that your dataset is split in a way that preserves semantic meaning, making it ideal for downstream NLP tasks. [Learn more about Llama Index](https://www.llamaindex.ai/). Docling is a tool for converting documents to text. It supports a wide range of document formats, including PDF, DOCX, PPTX, Images, HTML, AsciiDoc, and Markdown. [Learn more about Docling](https://ds4sd.github.io/docling/). Get started by uploading your files and see your corpus take shape! [View an example dataset](https://huggingface.co/datasets/davanstrien/MOH-Bethnal-Green) created with Corpus Creator. """ with gr.Blocks() as demo: state = gr.State({}) gr.HTML( """

Corpus Creator

📁 From scattered files to a structured dataset in minutes 📁
""" ) gr.Markdown(description) gr.Markdown( "### Sign in to Hugging Face Hub if you want to upload the dataset to the Hub" ) gr.LoginButton() gr.Markdown( "### 1. Upload Files\nClick 'Upload Files' to select text file(s). A preview will generate automatically" ) with gr.Tab(): with gr.Row(): upload_button = gr.File( file_types=[ ".hwp", ".pdf", ".docx", ".pptx", ".ppt", ".pptm", ".csv", ".epub", ".md", ".mbox", ".ipynb", ".xls", ".xlsx", ], file_count="multiple", height=50, interactive=True, label="Upload Files", ) with gr.Tab(): with gr.Row(): urls = gr.Dataframe(label="URL", headers=["urls"], interactive=True) with gr.Row(): upload_button_files = gr.Button("Upload URLs") gr.Markdown(""" ### 2. Adjust Parameters for Chunking Text (Optional) Customize the chunk size, overlap, and sentence splitting option according to your requirements. """) with gr.Row(): split_sentences = gr.Checkbox(True, label="Split sentences?") chunk_size = gr.Number( 256, label="Chunk size (size to split text into)", minimum=10, maximum=4096, step=1, ) chunk_overlap = gr.Number( 0, label="Chunk overlap (overlap size between chunks)", minimum=0, maximum=4096, step=1, ) gr.Markdown( "### 3. Update Preview\nClick 'Update Preview' to see changes based on new parameters." ) update_preview_button = gr.Button("Update Preview") corpus_preview_df = gr.DataFrame(label="Dataset Preview") preview_summary = gr.Markdown() gr.Markdown("""### 4. Upload to the Hub After adjusting parameters and previewing the dataset, you can upload it to the Hugging Face Hub. Make sure you are signed in to your Hugging Face account. Specify the Hub ID and choose whether to make the dataset private. Click 'Upload to Hub' to complete the process. """) with gr.Row(): with gr.Column(): hub_id = gr.Textbox(value=None, label="Hub ID") private = gr.Checkbox(False, label="Upload dataset to a private repo?") upload_hub_button = gr.Button("Upload to the Hub") upload_summary = gr.Markdown() with gr.Accordion("detailed logs", open=False): Log(log_file, dark=True, xterm_font_size=12) upload_button.upload( upload_and_preview, inputs=[upload_button, chunk_size, chunk_overlap, split_sentences], outputs=[state, corpus_preview_df, preview_summary], ) upload_button_files.click( upload_and_preview, inputs=[urls, chunk_size, chunk_overlap, split_sentences], outputs=[state, corpus_preview_df, preview_summary], ) update_preview_button.click( preview_dataset, inputs=[state, chunk_size, chunk_overlap, split_sentences], outputs=[state, corpus_preview_df, preview_summary], ) upload_hub_button.click( upload_to_hub, inputs=[state, hub_id, private], outputs=[upload_summary], ) demo.launch(debug=True)