File size: 8,328 Bytes
95abc0b
 
64cd544
95abc0b
64cd544
f43467c
3c15d19
64cd544
f43467c
64cd544
f43467c
 
3c15d19
 
 
95abc0b
 
78b9829
f43467c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af90f1
 
 
f43467c
 
 
 
 
 
 
 
 
 
 
 
 
 
64cd544
95abc0b
 
f43467c
64cd544
95abc0b
90cd056
95abc0b
1af90f1
 
 
 
 
 
 
 
 
95abc0b
90cd056
 
 
 
95abc0b
 
3c15d19
 
 
 
 
 
 
 
 
 
 
 
 
64cd544
 
 
 
3c15d19
 
64cd544
 
 
95abc0b
6d2b0a3
 
 
 
 
 
 
95abc0b
 
64cd544
 
 
6d2b0a3
 
 
64cd544
95abc0b
 
64cd544
 
 
 
6d2b0a3
64cd544
 
3c15d19
 
 
 
 
 
 
 
 
64cd544
 
 
 
 
 
 
3c15d19
64cd544
ca4bcc4
 
64cd544
 
ca4bcc4
64cd544
3c15d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9df97
64cd544
 
 
 
95abc0b
64cd544
 
 
95abc0b
 
 
 
6d2b0a3
 
5192410
6d2b0a3
95abc0b
5192410
 
 
 
 
 
 
 
95abc0b
 
 
 
 
 
64cd544
 
 
 
 
 
6d2b0a3
 
95abc0b
 
6d2b0a3
 
 
95abc0b
3c15d19
 
 
6d2b0a3
 
64cd544
 
95abc0b
6d2b0a3
95abc0b
 
3c15d19
64cd544
95abc0b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import random
import shutil
import tempfile
import zipfile
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime

import fitz  # PyMuPDF
import gradio as gr
from huggingface_hub import DatasetCard, DatasetCardData, HfApi

from dataset_card_template import DATASET_CARD_TEMPLATE

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"


def process_pdf(pdf_file, sample_size, temp_dir, progress=gr.Progress()):
    try:
        pdf_path = pdf_file.name
        doc = fitz.open(pdf_path)
        total_pages = len(doc)

        pages_to_convert = (
            total_pages if sample_size == 0 else min(sample_size, total_pages)
        )
        selected_pages = (
            sorted(random.sample(range(total_pages), pages_to_convert))
            if sample_size > 0 and sample_size < total_pages
            else range(total_pages)
        )

        images = []
        for page_num in progress.tqdm(
            selected_pages, desc=f"Converting {os.path.basename(pdf_path)}", unit="page"
        ):
            page = doc[page_num]
            pix = page.get_pixmap()
            image_path = os.path.join(
                temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num+1}.png"
            )
            pix.save(image_path)
            images.append(image_path)

        doc.close()
        return images, None
    except Exception as e:
        return [], f"Error processing {pdf_file.name}: {str(e)}"


def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    progress(0, desc="Starting conversion")
    all_images = []
    skipped_pdfs = []

    for i, pdf_file in enumerate(
        progress.tqdm(pdf_files, desc="Converting PDFs", unit="PDF")
    ):
        images, error = process_pdf(pdf_file, sample_size, temp_dir, progress)
        if error:
            skipped_pdfs.append(pdf_file.name)
            gr.Info(error)
        else:
            all_images.extend(images)

    message = f"Saved {len(all_images)} images to temporary directory"
    if skipped_pdfs:
        message += f"\nSkipped {len(skipped_pdfs)} PDFs due to errors: {', '.join(skipped_pdfs)}"
    return all_images, message


def get_size_category(num_images):
    if num_images < 1000:
        return "n<1K"
    elif num_images < 10000:
        return "1K<n<10K"
    elif num_images < 100000:
        return "10K<n<100K"
    elif num_images < 1000000:
        return "100K<n<1M"
    else:
        return "n>1M"


def process_pdfs(
    pdf_files,
    sample_size,
    hf_repo,
    create_zip,
    private_repo,
    oauth_token: gr.OAuthToken | None,
    progress=gr.Progress(),
):
    if not pdf_files:
        return (
            None,
            None,
            gr.Markdown(
                "⚠️ No PDF files uploaded. Please upload at least one PDF file."
            ),
        )

    if oauth_token is None:
        return (
            None,
            None,
            gr.Markdown(
                "⚠️ Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset."
            ),
        )

    try:
        temp_dir = tempfile.mkdtemp()
        images_dir = os.path.join(temp_dir, "images")
        os.makedirs(images_dir)

        progress(0, desc="Starting PDF processing")
        images, message = pdf_to_images(pdf_files, sample_size, images_dir)

        zip_path = None
        if create_zip:
            # Create a zip file of the images
            zip_path = os.path.join(temp_dir, "converted_images.zip")
            with zipfile.ZipFile(zip_path, "w") as zipf:
                progress(0, desc="Zipping images")
                for image in progress.tqdm(images, desc="Zipping images"):
                    zipf.write(image, os.path.basename(image))
            message += f"\nCreated zip file with {len(images)} images"

        if hf_repo:
            try:
                hf_api = HfApi(token=oauth_token.token)
                hf_api.create_repo(
                    hf_repo,
                    repo_type="dataset",
                    private=private_repo,
                )
                hf_api.upload_large_folder(
                    folder_path=temp_dir,
                    repo_id=hf_repo,
                    repo_type="dataset",
                    # path_in_repo="images",
                )

                # Determine size category
                size_category = get_size_category(len(images))

                # Create DatasetCardData instance
                card_data = DatasetCardData(
                    tags=["created-with-pdfs-to-page-images-converter", "pdf-to-image"],
                    size_categories=[size_category],
                )

                # Create and populate the dataset card
                card = DatasetCard.from_template(
                    card_data,
                    template_path=None,  # Use default template
                    hf_repo=hf_repo,
                    num_images=len(images),
                    num_pdfs=len(pdf_files),
                    sample_size=sample_size if sample_size > 0 else "All pages",
                    creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                )

                # Add our custom content to the card
                card.text = DATASET_CARD_TEMPLATE.format(
                    hf_repo=hf_repo,
                    num_images=len(images),
                    num_pdfs=len(pdf_files),
                    sample_size=sample_size if sample_size > 0 else "All pages",
                    creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    size_category=size_category,
                )

                repo_url = f"https://huggingface.co/datasets/{hf_repo}"
                message += f"\nUploaded dataset card to Hugging Face repo: [{hf_repo}]({repo_url})"

                card.push_to_hub(hf_repo, token=oauth_token.token)
            except Exception as e:
                message += f"\nFailed to upload to Hugging Face: {str(e)}"

        return images, zip_path, message
    except Exception as e:
        if "temp_dir" in locals():
            shutil.rmtree(temp_dir)
        return None, None, f"An error occurred: {str(e)}"


# Define the Gradio interface
with gr.Blocks() as demo:
    gr.HTML(
        """<h1 style='text-align: center;'> PDFs to Page Images Converter</h1>
        <center><i> &#128193; Convert PDFs to an image dataset, splitting pages into individual images &#128193; </i></center>"""
    )
    gr.Markdown(
        """
        This app allows you to:
        1. Upload one or more PDF files
        2. Convert each page of the PDFs into separate image files
        3. (Optionally) sample a specific number of pages from each PDF
        4. (Optionally) Create a downloadable ZIP file of the converted images
        5. (Optionally) Upload the images to a Hugging Face dataset repository
        """
    )

    with gr.Row():
        gr.LoginButton(size="sm")

    with gr.Row():
        pdf_files = gr.File(
            file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
        )
    with gr.Row():
        sample_size = gr.Number(
            value=None,
            label="Pages per PDF (0 for all pages)",
            info="Specify how many pages to convert from each PDF. Use 0 to convert all pages.",
        )
        hf_repo = gr.Textbox(
            label="Hugging Face Repo",
            placeholder="username/repo-name",
            info="Enter the Hugging Face repository name in the format 'username/repo-name'",
        )
    with gr.Row():
        create_zip = gr.Checkbox(label="Create ZIP file of images?", value=False)
        private_repo = gr.Checkbox(label="Make repository private?", value=False)
    with gr.Accordion("View converted images", open=False):
        output_gallery = gr.Gallery(label="Converted Images")
    status_text = gr.Markdown(label="Status")
    download_button = gr.File(label="Download Converted Images")

    submit_button = gr.Button("Convert PDFs to page images")
    submit_button.click(
        process_pdfs,
        inputs=[pdf_files, sample_size, hf_repo, create_zip, private_repo],
        outputs=[output_gallery, download_button, status_text],
    )

# Launch the app
demo.launch(debug=True)