davanstrien's picture
davanstrien HF staff
fix login
108916e
import multiprocessing
import os
import random
import shutil
import tempfile
import zipfile
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import fitz # PyMuPDF
import gradio as gr
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from PIL import Image
from dataset_card_template import DATASET_CARD_TEMPLATE
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
CPU_COUNT = multiprocessing.cpu_count()
MAX_WORKERS = min(32, CPU_COUNT) # Use CPU count directly for processes
def process_pdf(pdf_file, sample_percentage, temp_dir):
try:
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
total_pages = len(doc)
pages_to_convert = int(total_pages * (sample_percentage / 100))
pages_to_convert = max(
1, min(pages_to_convert, total_pages)
) # Ensure at least one page and not more than total pages
selected_pages = (
sorted(random.sample(range(total_pages), pages_to_convert))
if 0 < sample_percentage < 100
else range(total_pages)
)
images = []
for page_num in selected_pages:
page = doc[page_num]
pix = page.get_pixmap() # Remove the Matrix scaling
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image_path = os.path.join(
temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num+1}.jpg"
)
image.save(image_path, "JPEG", quality=85, optimize=True)
images.append(image_path)
doc.close()
return images, None, len(images)
except Exception as e:
return [], f"Error processing {pdf_file.name}: {str(e)}", 0
def pdf_to_images(pdf_files, sample_percentage, temp_dir, progress=gr.Progress()):
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
progress(0, desc="Starting conversion")
all_images = []
skipped_pdfs = []
total_pages = sum(len(fitz.open(pdf.name)) for pdf in pdf_files)
processed_pages = 0
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
future_to_pdf = {
executor.submit(process_pdf, pdf, sample_percentage, temp_dir): pdf
for pdf in pdf_files
}
for future in as_completed(future_to_pdf):
pdf = future_to_pdf[future]
images, error, pages_processed = future.result()
if error:
skipped_pdfs.append(error)
gr.Info(error)
else:
all_images.extend(images)
processed_pages += pages_processed
progress((processed_pages / total_pages), desc=f"Processing {pdf.name}")
message = f"Saved {len(all_images)} images to temporary directory"
if skipped_pdfs:
message += f"\nSkipped {len(skipped_pdfs)} PDFs due to errors: {', '.join(skipped_pdfs)}"
return all_images, message
def get_size_category(num_images):
if num_images < 1000:
return "n<1K"
elif num_images < 10000:
return "1K<n<10K"
elif num_images < 100000:
return "10K<n<100K"
elif num_images < 1000000:
return "100K<n<1M"
else:
return "n>1M"
def process_pdfs(
pdf_files,
sample_percentage,
hf_repo,
create_zip,
private_repo,
oauth_token: gr.OAuthToken | None,
progress=gr.Progress(),
):
if not pdf_files:
return (
None,
None,
gr.Markdown(
"⚠️ No PDF files uploaded. Please upload at least one PDF file."
),
)
# if oauth_token is None:
# return (
# None,
# None,
# gr.Markdown(
# "⚠️ Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset."
# ),
# )
try:
temp_dir = tempfile.mkdtemp()
images_dir = os.path.join(temp_dir, "images")
os.makedirs(images_dir)
progress(0, desc="Starting PDF processing")
images, message = pdf_to_images(pdf_files, sample_percentage, images_dir)
# Create a new directory for sampled images
sampled_images_dir = os.path.join(temp_dir, "sampled_images")
os.makedirs(sampled_images_dir)
# Move sampled images to the new directory and update paths
updated_images = []
for image in images:
new_path = os.path.join(sampled_images_dir, os.path.basename(image))
shutil.move(image, new_path)
updated_images.append(new_path)
# Update the images list with new paths
images = updated_images
zip_path = None
if create_zip:
# Create a zip file of the sampled images
zip_path = os.path.join(temp_dir, "converted_images.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
progress(0, desc="Zipping images")
for image in progress.tqdm(images, desc="Zipping images"):
zipf.write(
os.path.join(sampled_images_dir, os.path.basename(image)),
os.path.basename(image),
)
message += f"\nCreated zip file with {len(images)} images"
if hf_repo:
if oauth_token is None:
raise gr.Error(
"Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset."
)
try:
hf_api = HfApi(token=oauth_token.token)
hf_api.create_repo(
hf_repo,
repo_type="dataset",
private=private_repo,
)
# Upload only the sampled images directory
hf_api.upload_folder(
folder_path=sampled_images_dir,
repo_id=hf_repo,
repo_type="dataset",
path_in_repo="images",
)
# Determine size category
size_category = get_size_category(len(images))
# Create DatasetCardData instance
card_data = DatasetCardData(
tags=["created-with-pdfs-to-page-images-converter", "pdf-to-image"],
size_categories=[size_category],
)
# Create and populate the dataset card
card = DatasetCard.from_template(
card_data,
template_path=None, # Use default template
hf_repo=hf_repo,
num_images=len(images),
num_pdfs=len(pdf_files),
sample_size=sample_percentage
if sample_percentage > 0
else "All pages",
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
)
# Add our custom content to the card
card.text = DATASET_CARD_TEMPLATE.format(
hf_repo=hf_repo,
num_images=len(images),
num_pdfs=len(pdf_files),
sample_size=sample_percentage
if sample_percentage > 0
else "All pages",
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
size_category=size_category,
)
repo_url = f"https://huggingface.co/datasets/{hf_repo}"
message += f"\nUploaded dataset card to Hugging Face repo: [{hf_repo}]({repo_url})"
card.push_to_hub(hf_repo, token=oauth_token.token)
except Exception as e:
message += f"\nFailed to upload to Hugging Face: {str(e)}"
return images, zip_path, message
except Exception as e:
if "temp_dir" in locals():
shutil.rmtree(temp_dir)
return None, None, f"An error occurred: {str(e)}"
# Define the Gradio interface
with gr.Blocks() as demo:
gr.HTML(
"""<h1 style='text-align: center;'> PDFs to Page Images Converter</h1>
<center><i> &#128193; Convert PDFs to an image dataset, splitting pages into individual images &#128193; </i></center>"""
)
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; max-width: 1000px; margin: 0 auto;">
<div style="flex: 1; padding-right: 20px;">
<p>This app allows you to:</p>
<ol>
<li>Upload one or more PDF files</li>
<li>Convert each page of the PDFs into separate image files</li>
<li>(Optionally) sample a specific number of pages from each PDF</li>
<li>(Optionally) Create a downloadable ZIP file of the converted images</li>
<li>(Optionally) Upload the images to a Hugging Face dataset repository</li>
</ol>
</div>
<div style="flex: 1;">
<img src="https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset/resolve/main/assets/PDF%20page%20split%20illustration.png"
alt="PDF page split illustration"
style="max-width: 50%; height: auto;">
</div>
</div>
"""
)
with gr.Row():
pdf_files = gr.File(
file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
)
with gr.Row():
sample_percentage = gr.Slider(
minimum=0,
maximum=100,
value=100,
step=1,
label="Percentage of pages to sample per PDF",
info="0% for no sampling (all pages), 100% for all pages",
)
create_zip = gr.Checkbox(label="Create ZIP file of images?", value=False)
with gr.Accordion("Hugging Face Upload Options", open=True):
gr.LoginButton(size="sm")
with gr.Row():
hf_repo = gr.Textbox(
label="Hugging Face Repo",
placeholder="username/repo-name",
info="Enter the Hugging Face repository name in the format 'username/repo-name'",
)
private_repo = gr.Checkbox(label="Make repository private?", value=False)
with gr.Accordion("View converted images", open=False):
output_gallery = gr.Gallery(label="Converted Images")
status_text = gr.Markdown(label="Status")
download_button = gr.File(label="Download Converted Images")
submit_button = gr.Button("Convert PDFs to page images")
submit_button.click(
process_pdfs,
inputs=[pdf_files, sample_percentage, hf_repo, create_zip, private_repo],
outputs=[output_gallery, download_button, status_text],
)
demo.launch()